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Abstract

With the popularization of IoT devices, embedded firmware security has attracted people’s attention. Command
injection (CI) is one of the most common types of vulnerabilities in Linux-based embedded firmware. It is caused by
user input being propagated to functions responsible for command execution without strict sanitization, which can be
detected by static taint analysis. Unfortunately, single-binary taint analysis tools cannot find vulnerabilities caused by
custom dynamically linked library functions (DLLFs) that are implemented in external library files, while multi-binary
analysis tools are time-consuming. In this paper, we present SLFHunter, an approach that leverages Large Language
Model (LLM) to analyze sensitive custom DLLFs separately, and imports their information into single-binary taint
analysis tools to overcome this challenge. Our approach follows filtering rules to find out sensitive DLLFs that call
common sink functions, and analyzes them with LLMs to find sink library functions (SLFs) where input parameters
can be passed to executed command strings. Finally, SLFs are marked as new sinks to help existing tools discover CI
vulnerabilities caused by them. We implemented SLFHunter as a ChatGPT-based module for EmTaint and evaluated
it with a dataset consisting of 100 Linux-based embedded firmware samples from 13 vendors. The results show that
our prompts can guide ChatGPT 4.0 to identify SLFs with 95% accuracy after being improved with a trick we dubbed
“double-check”. SLFHunter can help EmTaint find 42 additional CI vulnerabilities with an average time cost increase
of 89 seconds on our dataset, which demonstrates the effectiveness and efficiency of our approach.
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1. Introduction

With the development of emerging technologies such
as smart homes and smart cities, more and more Internet
of Things (IoT) devices (e.g., routers, IP cameras, and
smart TVs) have been deployed. According to the latest
available data [1], there are approximately 14.76 billion
connected IoT devices. While these devices bring con-
venience to consumers, they also pose significant secu-
rity risks because they expose more attack surfaces than
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traditional devices due to their special structures and re-
quirements [2]. As of 2023, the size of the IoT security
market had reached USD 4.94 billion [3].

Embedded firmware is an important part of IoT de-
vices, as it undertakes the implementation of all device
features. However, the structure of firmware depends
on its embedded operating systems (OS), which leads
to differences in the security analysis methods of differ-
ent OSs. Among them, Linux is the most popular em-
bedded OS due to its open-source nature, customizabil-
ity and flexibility [4, 5]. These features encourage IoT
vendors to develop and add customized programs with
various features into the firmware, which brings secu-
rity risks. Therefore, Linux-based embedded firmware
has become a focus of IoT security studies [6, 7, 8, 9].

Command injection (CI) is one of the most com-
mon types of vulnerabilities in Linux-based embedded
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firmware [10, 11]. The reason is that IoT devices often
have several web-based interfaces that accept user in-
put to provide services to users, but the development of
back-end binaries of web service (e.g., httpd, lighttpd,
cgibin) may not follow best security practices. If user
input can reach functions responsible for command ex-
ecution (e.g., system, popen) without strict sanitization,
adversaries can run arbitrary commands by sending spe-
cially crafted packets to the web-based interface.

Static taint analysis is widely used to detect CI vul-
nerabilities due to its efficiency and independence from
real devices or firmware emulators (which still faces
many unresolved challenges [12]). It finds CI vulnera-
bilities by detecting whether the data received by library
functions responsible for receiving user input (i.e., taint
source functions) can be propagated to library func-
tions responsible for command execution (i.e., taint sink
functions) without proper constraints. Several previous
efforts [13, 14, 6] have made significant contributions in
applying static taint analysis to Linux-based embedded
firmware vulnerability detection. Among them, Em-
Taint [6] demonstrated the strongest performance in de-
tecting CI vulnerabilities.

Challenges. However, the input of EmTaint is a single
binary, which means that it cannot analyze dynamically
linked library functions (DLLFs) in the target binary
because they are implemented in external library files.
Therefore, EmTaint can only identify common taint
source, propagation and sink functions based on pre-set
function names. Unfortunately, in light of our obser-
vation, common library functions responsible for com-
mand execution may be encapsulated in a library func-
tion with another name customized by the firmware ven-
dor. We name these custom library functions that may
cause CI vulnerabilities sink library functions (SLFs).
EmTaint cannot identify SLFs and will miss vulnerabil-
ities caused by them, which is also a common limita-
tion of single-binary taint analysis tools. Multi-binary
analysis can solve this problem, but time consumption
will significantly increase. For example, on the dataset
of EmTaint [6], multi-binary analysis tool Karonte [13]
cost 451 hours, while single-binary analysis tool Em-
Taint only cost 3.5 hours.

Our Approach. To overcome this challenge, we pro-
pose a new approach: we can first analyze sensitive cus-
tom DLLFs separately to identify SLFs, and then import
the information into single-binary taint analysis tools.
This approach can both discover vulnerabilities caused
by SLFs and control cost within a certain range, making
up for the shortcomings of single-binary analysis not be-
ing able to delve into DLLFs and multi-binary analysis

taking too much time.

Identifying SLFs. Traditional static analysis tech-
niques such as reaching definition analysis is a way to
analyze sensitive library functions and identify SLFs.
However, these techniques require complete data flow
information, including information about the called li-
brary functions, which is similar to multi-binary anal-
ysis and may come at a cost that exceeds expecta-
tions. Furthermore, traditional methods are based on
the rules governing taint label propagation, but the man-
ually defined rules rely on human expertise and can-
not cover all situations. The string matching heuris-
tics in Karonte [13] and the function behavior similarity
in FITS [15] can also be employed to identify SLFs,
but the former will miss SLFs whose names are not re-
lated to common sink functions, and the latter cost an
average of 3 hours per sample in their dataset, which
is time-consuming. Additionally, similar to predicting
function names [16], deep learning techniques can also
be applied to identifying SLFs, but they rely on training
datasets, which means that the quality of the dataset de-
termines the effectiveness of the model, and it is difficult
for the model to identify SLFs that have not been seen
before.

In contrast, Large Language Model (LLM) is a good
choice for this task, because it can capture the seman-
tics of function names and code efficiently like an ex-
perienced security expert without additional human in-
tervention. According to a recent study [17], the lim-
itation of LLMs in vulnerability detection is that they
perform poorly in analyzing large and complex code
segments, which means that inputting the entire target
binary and all library files in the firmware into LLMs
is inefficient. Nonetheless, they are effective in under-
standing potentially vulnerable patterns (including com-
mand injection) in a given snippet of code, which just
right meets our need for large-scale taint analysis of in-
dividual library functions.

In this paper, we propose SLFHunter (Sink Library
Function Hunter), an approach that combines tradi-
tional techniques with LLM to find potential SLFs from
DLLFs in Linux-based embedded firmware. Our ap-
proach follows several filtering rules to find out secu-
rity sensitive library functions first to save the resources
and improve the efficiency of LLMs. Then, our prompts
are leveraged to guide LLMs to identify sensitive in-
put parameters of these library functions that may cause
CI vulnerabilities accurately. Finally, SLFHunter im-
ports the information of these newly discovered SLFs
into EmTaint to find more vulnerabilities.

We implemented SLFHunter as a ChatGPT-based
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module for EmTaint and evaluated it with a dataset
consisting of 100 real-world Linux-based embedded
firmware samples from 13 well-known IoT vendors.
The results show that SLFHunter can help EmTaint find
42 additional CI vulnerabilities with an average time
cost increase of 89 seconds. We also checked the results
returned by ChatGPT 4.0 and found that our prompts
can guide it to analyze the decompiled code of library
functions with high accuracy, low false positive rate and
zero false negative rate, especially after being improved
with a trick we dubbed “double-check”. Additionally,
we also evaluated the combination of SLFHunter and
FITS. We found that FITS can alleviate the limitation of
EmTaint and help SLFHunter find more vulnerabilities,
but also leads to a significant decrease in efficiency.

Our main contributions are as follows:

• We proposed a novel approach that imports the
information of custom dynamically linked library
functions into single-binary taint analysis tools to
find command injection vulnerabilities caused by
sink library functions (SLFs).

• We proposed a LLM-based method to identify
SLFs. We designed a set of prompt templates that
can guide LLMs to accurately identify the input pa-
rameters of a given library function that can cause
CI based on the decompiled code of this function.

• We implemented SLFHunter as a ChatGPT-based
module for EmTaint and evaluated it with a dataset
consisting of 100 real-world Linux-based embed-
ded firmware samples from 13 well-known IoT
vendors. The results show that our prompts can
guide ChatGPT 4.0 to identify SLFs with 95%
accuracy after double-check, and SLFHunter can
help EmTaint discover 42 additional CI vulnera-
bilities at an acceptable cost on our dataset.

2. Motivation

2.1. Limitations of Existing Static Taint Analysis Tools
EmTaint [6] is a state-of-the-art open-source static

taint analysis tool that can find more vulnerabilities than
other tools, such as Karonte [13] and SaTC [14], on the
same dataset in less time. To test its performance in
detecting CI vulnerabilities in Linux-based embedded
firmware, we collected several firmware images with
known vulnerabilities and employed EmTaint to ana-
lyze them. The results show that EmTaint cannot han-
dle DLLFs correctly because they are implemented in
external library files rather than the binary being ana-
lyzed. As shown in Listing 1, the developers of EmTaint

manually wrote customized processing scripts for com-
mon library functions (e.g., system, recv, getenv, strcpy)
to alleviate this deficiency, but this approach cannot ad-
dress the root cause.

As an example, a CI vulnerability in adm.cgi in
Wavlink WN575A3 router firmware cannot be found by
EmTaint. The back-end binary adm.cgi calls fgets to ob-
tain user input from received request packets and passes
them into set sys init, one of the functions responsible
for parsing the contents of user input. As shown in List-
ing 2, set sys init calls a custom DLLF web get to ex-
tract values of parameters from user input “a1” (line 4).
Then, it calls another library function do system to run
a command string containing the value of “username”,
one of extracted parameters, without any sanitization
(line 7 and 10). Adversaries can run arbitrary com-
mands by adding commands into the value of “user-
name” and sending the constructed request packet to
adm.cgi.

Thanks to manually written scripts, EmTaint can
mark common library function fgets as a taint source
and propagate the tainted data to set sys init. How-
ever, it does not mark custom DLLF do system as a taint
sink function because this function is a typical SLF. As
shown in Listing 3, do system is implemented in exter-
nal library file libwebutil.so and calls system, a common
sink function that can be identified by EmTaint, to run
command strings. EmTaint only analyzes adm.cgi and
does not know that the input parameters of do system
can be propagated to system, which leads to EmTaint
not finding any vulnerabilities in set sys init. In other
words, just a simple encapsulation causes EmTaint to
miss one (or even more) vulnerability.

SaTC [14], another state-of-the-art static taint analy-
sis tool that can detect CI vulnerabilities, is also based
on manually defined sink functions and cannot find vul-
nerabilities caused by SLFs. Therefore, we decide to
improve EmTaint by taking custom DLLFs that may
cause CI vulnerabilities into consideration.

2.2. Taint Analysis Capability of LLMs

Comparison with Existing Methods. To perform taint
analysis of a single library function, traditional static
analysis techniques such as reaching definition analysis
are good choices. However, in practice, we found that
the cost of these techniques may exceed expectations.
The main reason is that the analyzed library functions
may call other library functions. For traditional tech-
niques, it is necessary to follow up on these called li-
brary functions in depth to figure out whether they will
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1 import dataflow
2 from dataflow.data_collector import weaks_command_exec
3
4 class system(dataflow.SimProcedure):
5 def run(self, command):
6 if self.flow_dir == 'F' and self.purpose == 0:
7 for trace_expr in self.block.forward_exprs:
8 trace_sims = trace_expr.expr.sims
9 trace_ast = trace_expr.expr.ast

10 flag = trace_expr.expr.flag
11
12 if trace_ast.op == 'BVS' and flag & 0x100 and command in trace_sims:
13 self.block.is_tainted = 2
14 weaks_command_exec[self.block.addr].append(trace_expr)
15 print("Good, find taint in system! %s %s 0x%x %d" % (self.block, trace_expr, trace_expr.expr.

taint_source, len(trace_expr.inter_funcs)))
16 return 1
17
18 def infer_type(self, command):
19 self.label_variable_type(command, 'ptr')
20 self.label_return_type('N')

Listing 1: Customized processing script of EmTaint for system.

1 int __fastcall set_sys_init(char *a1)
2 {
3 v3 = (const char *)nvram_bufget(0, "Login");
4 v2 = (const char *)web_get("username", a1, 0);
5 v5 = strdup(v2);
6 ...
7 do_system("sed -e 's/^%s:/%s:/' /etc/passwd > /etc/newpw", v3, v5);
8 do_system("cp /etc/newpw /etc/passwd");
9 do_system("rm -f /etc/newpw");

10 do_system("chpasswd.sh %s %s", v5, v9);
11 ...
12 }

Listing 2: Decompiled code of set sys init in adm.cgi (simplified).

1 int do_system(char *a1, ...)
2 {
3 va_start(va, a1);
4 vsprintf(byte_21768, a1, (va_list *)va);
5 sprintf(byte_21768, "%s 1>%s 2>&1", byte_21768, "/dev/console");
6 return system(byte_21768);
7 }

Listing 3: Decompiled code of do system in libwebutil.so.

propagate the tainted data. The inter-procedural anal-
ysis needs to analyze multiple binaries and makes the
analysis process more and more complex and require
much time. Furthermore, traditional methods are based
on the rules governing taint label propagation, but the
manually defined rules rely on human expertise and can-
not cover all situations.

Several previously proposed methods can also be em-
ployed to identify SLFs. Karonte [13] cannot find CI
vulnerabilities, but they also considered library func-
tions that are implemented in external library files. They
proposed applying string matching heuristics on the
name of these functions to detect whether they are simi-
lar to memcmp, memcpy or strlen. This approach is also
suitable for system-like functions but not rigorous. For
example, sqlite Stat hook in ASUS TUF-AX3000 V2

is an SLF, but it cannot be identified by this method
because its name is not similar to any common sink
functions. FITS [15] compares the behavior features
of custom functions with those of anchor functions to
identify intermediate taint sources (ITSs). We can also
identify SLFs based on function behavior features, but
FITS cost an average of 3 hours on each sample in their
dataset, which means that extracting features and calcu-
lating their similarity are time-consuming.

In addition, similar to predicting function names [16],
deep learning techniques can also be applied to identify-
ing SLFs. Deep learning techniques can automatically
learn features of function behaviors to identify the pat-
terns of SLFs. However, the main limitation is that they
rely on training datasets, which means that we need a
large dataset that contains both normal and taint sink
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1 int __fastcall wlcsm_wl_sta_assoc_auth_status(const char *a1, int a2, _BYTE *a3, _BYTE *a4)
2 {
3 ...
4 snprintf(byte_1A125, 0x50u, "/var/%s_assoc", a1);
5 snprintf(&byte_1A125[80], 0x84u, "wl -i %s assoclist > %s", a1, byte_1A125);
6 system(&byte_1A125[80]);
7 *a3 = j_wlcsm_scanFileForMAC(byte_1A125, a2);
8 unlink(byte_1A125);
9 snprintf(byte_1A125, 0x50u, "/var/%s_autho", a1);

10 snprintf(&byte_1A125[80], 0x84u, "wl -i %s autho_sta_list > %s", a1, byte_1A125);
11 system(&byte_1A125[80]);
12 *a4 = j_wlcsm_scanFileForMAC(byte_1A125, a2);
13 unlink(byte_1A125);
14 return 0;
15 }

Listing 4: Decompiled code of custom library function wlcsm wl sta assoc auth status (simplified).

functions and all of them must be accurately labeled.
The quality of the dataset determines the effectiveness
of the model, and it is difficult to identify SLFs that have
not been seen before in the dataset.

To overcome these challenges with low cost, LLM
has shown tremendous potential. LLMs can analyze
the propagation path of tainted data based on the se-
mantics of function names and code without additional
human intervention in a short time. Moreover, LLMs
have stronger generalization and semantic understand-
ing abilities than traditional deep learning techniques.
With the continuous development of LLM technology,
they can increasingly resemble experienced security ex-
perts in capturing the semantics of code.

Feasibility Analysis. With the rise of LLM, several
studies [18, 19, 17] have evaluated the performance of
LLMs in vulnerability detection. The results indicate
that LLM is not good at analyzing large and complex
code segments, but its automatic vulnerable pattern dis-
covery capability can assist traditional vulnerability de-
tection techniques, which is consistent with our require-
ments for detecting the risk of command injection in in-
dividual library functions. Therefore, in this section, we
test the feasibility of applying LLMs to CI vulnerability
detection.

Among existing LLM-based commercial products,
ChatGPT 4.0 [20] has the strongest vulnerability detec-
tion capability according to a recent study [18]. To eval-
uate its performance, we sent the decompiled code of a
sensitive library function that calls system (as shown in
Listing 4) to ChatGPT 4.0 and asked it which input pa-
rameters of this function may cause CI vulnerabilities.
The response of ChatGPT is shown below:

Analyzing the provided function
'wlcsm wl sta assoc auth status', it’s ev-

ident that there is a potential for command
injection through its input parameters. Let’s
break down the key points:

Input Parameter 'a1': This parameter is di-
rectly used in the formation of system com-
mands. It appears twice in the 'snprintf' calls
to format strings that are then executed by the
'system' function.

System Commands: The 'system' function ex-
ecutes the commands that are constructed us-
ing 'a1'. Since 'a1' is directly interpolated into
these commands ('wl -i %s assoclist > %s'
and 'wl -i %s autho sta list > %s'), if it con-
tains malicious content (like shell metacharac-
ters or other command sequences), it could lead
to command injection.

Lack of Sanitization or Validation: There is
no apparent sanitization or validation of 'a1'
before its use in constructing the system com-
mands. Without proper validation (such as en-
suring that 'a1' only contains safe characters),
this poses a significant security risk.

Other Parameters ('a2', 'a3', 'a4'): These
parameters do not directly influence the sys-
tem commands. 'a2' is used as a parameter in
'j wlcsm scanFileForMAC', and 'a3' and 'a4'
are used to store results. They do not seem to
pose a risk for command injection in the con-
text of this function.

Risk Assessment: The primary risk here comes
from the use of 'a1' in the 'system' calls. An at-
tacker could exploit this by passing a specially
crafted string as 'a1', potentially leading to arbi-
trary command execution on the system where
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1 int __fastcall agApi_iptable_nat_addUpnpRule(FILE *a1, int a2, int a3, int a4, int a5, int a6)
2 {
3 ...
4 v9 = (const char *)acosNvramConfig_get("lan_ifname");
5 strcpy(v13, v9);
6 j_arnonat_getWanInterface(v14);
7 j_inet_ntoa_b(a5, (char *)v15);
8 if ( a2 == 2 )
9 {

10 printf("%s(%d): proto=%d(%s), Wan(%d) IP(%s) Lan(%d)\n", "agApi_iptable_nat_addUpnpRule", 183, 2, "udp", a4, (const
char *)v15, a6);

11 sprintf(v16, "iptables -t nat -A FW_NAT_UPNP_PRIOTIY_2_3 -p udp -i %s --dport %d -j DNAT --to %s:%d", v14, a4, (const
char *)v15, a6);

12 if ( !a1 )
13 {
14 system(v16);
15 sprintf(v16, "iptables -A FW_UPNP_PORTMAPPING -p udp -i %s -d %s --dport %d -j ACCEPT", v14, (const char *)v15, a6);
16 v10 = system(v16);
17 return j_get_new_ruleID(v10);
18 }
19 fprintf(a1, "%s\n", v16);
20 sprintf(v16, "iptables -A FW_UPNP_PORTMAPPING -p udp -i %s -d %s --dport %d -j ACCEPT", v14, v15, a6);
21 }
22 ...
23 }

Listing 5: Decompiled code of custom library function agApi iptable nat addUpnpRule (simplified).

this function is executed.

In summary, the parameter 'a1' in the function
'wlcsm wl sta assoc auth status' can cause
command injection due to its direct use in sys-
tem command strings without any sanitization
or validation. The other parameters ('a2', 'a3',
'a4') do not directly contribute to this particular
vulnerability in the context of this function.

In the response, ChatGPT accurately identified the
taint sink function system and analyzed the propaga-
tion path of each input parameter to find parameters that
can cause CI vulnerabilities, which has proven the taint
analysis capability of LLMs for library functions.

To verify whether LLMs can capture the semantics
of function names and code, we also sent the decom-
piled code of a sensitive library function that cannot be
exploited (as shown in Listing 5) to ChatGPT. The re-
sponse of ChatGPT is shown below:

The function 'agApi iptable nat addUpnpRule'
builds command strings that include parameters
for iptables rules. These parameters are mostly
derived from the inputs 'a2', 'a4', 'a5', and
'a6'. Let’s inspect the manipulation and usage
of these parameters:

1. **'a2'** - Examining its usage, 'a2' seems
to be responsible for determining which proto-

col (TCP or UDP) is being used by modifying
the printed messages and iptables rule accord-
ingly. However, it only chooses between prede-
termined strings (“tcp” or “udp”) and does not
take part in constructing potentially dangerous
command strings.

2. **'a4'** and **'a6'** - These parameters
are directly used in crafting the iptables com-
mand strings. They are used respectively as des-
tination port values and target port/address val-
ues in the “DNAT” and “ACCEPT” rules com-
mands. Although these parameters are inte-
grated into shell commands, considering them
as integers under typical usage suggests that
even if passed directly, they would not pose a
command injection risk without further manipu-
lation or specific exploitative context associated
with iptables or shell behavior that is not visible
from this snippet.

3. **'a5'** - This parameter seems to be trans-
formed via 'j inet ntoa b()', which is typically
used to convert a numeric IP address into a stan-
dard dot-decimal notation string. This conver-
sion would typically sanitize the input to con-
form to an IP address format, reducing direct
injection risks of shell commands hidden within
the integer value.

From the data flow perspective, each user in-
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Figure 1: Overview of SLFHunter.

put is either used in a limited context or trans-
formed in such a way that arbitrary command
execution through direct input manipulation
would be unlikely. The function displays cau-
tious use around the formats used in opera-
tions affecting system commands ('sprintf()'
and 'system()' calls), effectively mitigating typ-
ical command injection vectors unless there’s an
under-documented behavior of 'j inet ntoa b',
'sprintf', or 'system' regarding special inputs
handling.

In this response, we can find that ChatGPT can in-
fer the functionality of the library function j inet ntoa b
like an experienced security expert, which proves that
LLMs can perform taint analysis accurately without
inter-procedural analysis based on the semantics of
function names.

3. Design

3.1. Overview
SLFHunter (Sink Library Functions Hunter) is an ap-

proach that leverages the taint analysis capability of
LLMs to find potential taint sink functions that may
cause CI vulnerabilities from DLLFs in Linux-based
embedded firmware. It can assist existing single-binary
static taint analysis tools (e.g., EmTaint [6]) in dis-
covering more vulnerabilities. As shown in Figure 1,
SLFHunter consists of three major components.

Library Function Filtering. Analyzing all library
functions in all library files in the firmware is inefficient.

This component follows several filtering rules to find
out sensitive functions that may cause CI vulnerabili-
ties from all DLLFs in the target binary based on their
decompiled code extracted from external library files.

Function Analysis with LLM. This component con-
structs prompts with the decompiled code of sensitive
library functions and sends them to the LLM. The LLM
will return the input parameters that can be exploited
for CI attacks in a fixed format. In this paper, we
choose to employ ChatGPT 4.0, the best performing
LLM product in vulnerability detection according to a
recent study [18].

New Sink Functions Import. Finally, we need to im-
port the information of SLFs into existing static taint
analysis tools to tell them which input parameters of
which library functions may be exploited. In this paper,
this component can automatically generate processing
scripts for SLFs and import them into EmTaint.

3.2. Library Function Filtering

To save resources of LLMs and time, we set several
filtering rules as follows to remove library functions that
are unlikely to cause CI vulnerabilities:

• We only focus on the DLLFs called by the target
binary. Therefore, we obtain the names of loaded
library files from “.dynamic” and “.dynstr” sec-
tions of the binary, and leverage a disassembler
(e.g., IDA Pro [21]) to extract the decompiled code
of library functions called by the binary from li-
brary files.
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Figure 2: The structure of our prompts.

• Then, we find out library functions that call com-
mon library functions responsible for command
execution (e.g., system, popen, and execve) be-
cause they are likely to be exploited for CI attacks.

• If a library function does not have any input pa-
rameters or all parameters are of type int, it is im-
possible for it to cause a CI vulnerability (we do
not consider the mistakes of disassemblers or taint
sources other than input parameters to reduce false
positives). Therefore, we remove such functions.

• If the input parameters of all taint sink functions
called by a library function are constant strings, we
remove this library function.

• Format string functions (e.g., do system(char *a1,
...)) are special cases. The format string “a1” is of-
ten a constant string and may be incorrectly identi-
fied as int type by IDA Pro. In this case, according
to the above rules, this function will be removed,
but parameters in “...” may be exploitable. There-
fore, we keep all format string functions to avoid
missing those whose input parameter types are in-
correctly identified.

After filtering, we export the decompiled code of sen-
sitive library functions from the disassembler for LLMs
to analyze.

3.3. LLM Prompt Design

In Section 2.2, we have proven the feasibility of lever-
aging LLMs to perform taint analysis on the decompiled
code of a library function, and identify input parameters
that can be propagated to library functions responsible
for command execution. Nevertheless, more detailed

prompt design is still needed to standardize prompt gen-
eration and returned text parsing to ensure that this task
is executed accurately by LLMs. Therefore, we de-
signed a set of prompt templates as shown in Figure 2
to construct prompts automatically. The design details
are as follows:

Prompt 1O: In the process of testing prompts, we
found that modifiers and explanation of terminology
have little impact on the results of taint analysis because
LLMs have already acquired the necessary knowledge.
Therefore, we only need to clearly describe our require-
ments with “Perform taint analysis on the input param-
eters of a decompiled function and answer which ones
can cause command injection”.

Prompt 2O: “without considering other sources” fol-
lowing Prompt 1O is presented to require the LLM to
ignore other potential taint sources (e.g., environment
variables, and functions that read external data), as we
are unable to provide the necessary information for an-
alyzing them, and they would confuse the LLM and in-
crease false positives.

Prompt 3O: To automate the import of new sink func-
tions, we employ “Reply in the format of 'Yes: input
parameters.' or 'No.' without details” to have the LLM
answer in a fixed format.

Prompt 4O: Sometimes, the LLM cannot understand
our meaning correctly and answer a lot of analysis de-
tails, which is why we present “(e.g. 'Yes: a2, a3')” as
an example, and it did work.

Prompt 5O: After describing the requirements, we
send the decompiled code of sensitive library functions
extracted from library files to the LLM.

Prompt 6O: During our testing of prompts, we discov-
ered an interesting trick that can improve the accuracy
of the results, which we dubbed “double-check”. Some-
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1 int __fastcall iqos_service(const char *a1)
2 {
3 ...
4 if ( !strcmp(a1, "start_iqos") )
5 {
6 ...
7 }
8 else
9 {

10 if ( !strcmp(a1, "stop_iqos") )
11 {
12 v5 = "bcmiqosd stop";
13 }
14 else if ( !strcmp(a1, "restart_iqos") )
15 {
16 v5 = "bcmiqosd restart";
17 }
18 else
19 {
20 if ( strcmp(a1, "pause_iqos") )
21 {
22 printf("%s(%d): action %s not supported \n", "iqos_service", 4883, a1);
23 return 0;
24 }
25 v5 = "bcmiqosd pause";
26 }
27 system(v5);
28 }
29 return 0;
30 }

Listing 6: Decompiled code of custom library function iqos service (simplified).

times, the LLM believes that input parameters that indi-
rectly affect the parameters of library functions respon-
sible for command execution can also be exploited for
CI attacks. If we send “Please double check and an-
swer again” to it, it will realize this mistake and provide
the correct answer. For example, the initial response of
ChatGPT 4.0 to the code shown in Listing 6 is “Yes:
a1.”, which is incorrect. After double-check, the re-
sponse is shown below:

Upon further review of the 'iqos service(const
char *a1)' function, it appears that my initial re-
sponse was incorrect. Here’s a revised analysis:

The function 'iqos service' checks the value of
'a1' and compares it against specific strings like
“start iqos”, “stop iqos”, “restart iqos”, and
“pause iqos” using 'strcmp'. The outcome
of these comparisons determines which hard-
coded string is passed to the 'system' func-
tion. For example, if 'a1' is “stop iqos”, then
“bcmiqosd stop” is passed to 'system'.

There is no direct concatenation of 'a1' with
any command string or execution of a command
directly based on 'a1'. The command strings
are predefined and not dynamically constructed
from 'a1'. Considering this, 'a1' does not ap-

pear to directly influence or construct the com-
mand strings executed by the 'system' function
in a way that could lead to command injection.
The system calls are controlled and use prede-
fined strings, not directly influenced by the con-
tents of 'a1' beyond selecting one of these pre-
defined commands.

Therefore, the correct answer is:

No.

“Double-check” can be executed multiple times until
the LLM responds the same determined result. Consid-
ering efficiency, we heuristically set the execution count
to a threshold 2 based on our experience, but it can be
changed as a parameter as LLMs evolve.

4. Implementation

We implemented SLFHunter as a module for Em-
Taint with about 500 lines of Python code. EmTaint
leverages an IDA script to extract the control flow graph
(CFG) and block information of the target binary, but
this script only supports versions below IDA Pro 7.0.
Therefore, we ported it to higher versions and added
the feature of searching for loaded library files from
the firmware filesystems, loading them into IDA Pro,
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and running the library function filtering script to ex-
tract the decompiled code of sensitive library functions.
Then, this script combines our prompt templates de-
signed in Section 3.3 with extracted decompiled code
and call the API of GPT-4 to analyze these sensitive li-
brary functions. Finally, it automatically generates pro-
cessing scripts for these functions based on the returned
results. After that, we can add these scripts into Em-
Taint and run it with new sink functions and find more
CI vulnerabilities.

Additionally, in the example shown in Section 2.1,
we found a custom taint propagation function web get
in Wavlink routers. It is called to extract the values of
parameters from the received user input. Similar func-
tions may exist in other firmware images, but it is diffi-
cult to identify them automatically because they do not
have obvious characteristics like taint sink functions of
CI vulnerabilities. Therefore, we have to manually sup-
plement the processing script for web get into EmTaint
to help it find more vulnerabilities in Wavlink firmware,
just as its developers have done before. At the same
time, we also fixed several small bugs that could cause
errors in the code of EmTaint.

5. Evaluation

5.1. Dataset
To evaluate the performance of SLFHunter, we con-

structed a dataset consisting of 100 real-world Linux-
based embedded firmware samples from 13 well-known
IoT vendors, including ASUS, Cisco, D-Link, Linksys,
LB-Link, Motorola, NETGEAR, TP-Link, Tenda, TO-
TOLink, TRENDnet, Wavlink and Xiaomi. Among
them, 66 samples are selected from the datasets of state-
of-the-art tools, including EmTaint [6], Karonte [13]
and SaTC [14]. The remaining 34 samples are down-
loaded from official websites of vendors. The list
of firmware samples in our dataset is shown in Ap-
pendix A.

Then, we extracted filesystems from these samples
with Binwalk [22]. After that, to select the target bina-
ries that are responsible for parsing user input and more
likely to be vulnerable to CI from these filesystems, we
borrowed the method of SaTC. For each filesystem, we
extracted user input keywords from front-end files and
matched the strings in back-end binaries with them. Fi-
nally, the binary with the maximum matched keywords
was treated as the target binary.

5.2. Analysis of Sensitive Library Functions
In our dataset, Library Function Filtering Module

found 120 sensitive library functions in 40 target bina-

Table 1: Results of ChatGPT-based taint analysis. For each sam-
ple, we list the analyzed binary, the accuracy of ChatGPT 4.0 before
and after double-check (DC), and the parameter-grained false positive
(#FP) and false negative (#FN) rates of SLF identification.

Vendor Model Binary
Accuracy SLF

Before DC After DC #FP #FN

ASUS
RT-AX86U PRO httpd 60% (6/10) 100% (10/10) 0% (0/16) 0% (0/16)

GT-AC2900 httpd 33.3% (2/6) 100% (6/6) 0% (0/16) 0% (0/16)

Cisco
RV130X 1.0.3.44 httpd 50% (3/6) 100% (6/6) 0%(0/6) 0%(0/6)

RV130X 1.0.3.55 httpd 60% (3/5) 100% (5/5) 0%(0/3) 0%(0/3)

D-Link DIR-878 prog.cgi 50% (1/2) 100% (2/2) 0%(0/3) 0%(0/3)

NETGEAR

R7000P httpd 75% (3/4) 100% (4/4) 0%(0/3) 0%(0/3)

LAX20 httpd 50% (4/8) 75% (6/8) 57.1%(4/7) 0%(0/3)

XR1000 v2 httpd 66.7% (6/9) 77.8% (7/9) 33.3%(2/6) 0%(0/4)

R6700 httpd 80% (4/5) 80% (4/5) 40% (2/5) 0% (0/3)

R7000 httpd 60% (3/5) 80% (4/5) 40% (2/5) 0% (0/3)

XR300 httpd 66.7% (2/3) 100% (3/3) 0% (0/2) 0% (0/2)

R7300 httpd 50% (2/4) 100% (4/4) 0% (0/2) 0% (0/2)

R8000 httpd 50% (2/4) 100% (4/4) 0% (0/1) 0% (0/1)

R8300 httpd 75% (3/4) 100% (4/4) 0% (0/2) 0% (0/2)

R8500 httpd 75% (3/4) 100% (4/4) 0% (0/2) 0% (0/2)

Other 25 samples 100% (41/41) 100% (41/41) 0% (0/56) 0% (0/56)

Total - - 73.3% (88/120) 95% (114/120) 7.4% (10/135) 0% (0/125)

ries. The remaining 60 binaries do not call any sen-
sitive library functions. Specially, none of the target
binaries in the firmware images of Motorola, TP-Link
and Xiaomi contains any custom DLLFs that call com-
mon library functions responsible for command execu-
tion. The reasons are discussed in Section 6.

Then, Function Analysis with LLM Module gener-
ated prompts with extracted sensitive library functions
and sent them to ChatGPT 4.0. Because the results re-
turned by LLMs are the input parameters that may cause
CI vulnerabilities, we cannot say the result of an SLF is
a true positive or false positive if some parameters are
false positives and some are false negatives. Therefore,
if the result of an SLF is strictly correct, we mark it
as “accurate”. At the same time, we refine the granu-
larity to parameters when calculating false positive and
false negative rates. For example, if the correct result
of Function A(a1, a2, a3) is “a1, a2” and the result re-
turned by the LLM is “a1, a3”, we mark “a3” as a false
positive and “a2” as a false negative. The results after
manual check are shown in Table 1.

According to the results, ChatGPT 4.0 can identify
SLFs with 100% accuracy in 25 samples. The results of
32 functions were inaccurate and 26 of them were cor-
rected after double-check (introduced in Section 3.3).
Among the 135 parameters returned by ChatGPT 4.0,
10 are false positives and no sensitive parameters were
missed. Overall, the results have shown that ChatGPT
4.0 is able to identify SLFs based on the decompiled
code of sensitive library functions with very high accu-
racy, low false positive rate and zero false negative rate.

False Positives. To figure out why the results of the
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Table 2: Accuracy of ChatGPT-based taint analysis with different tem-
perature settings. For each value of temperature parameter, we list the
accuracy of results on 9 functions (including gen jffs backup profile,
upload jffs profile, bwdpi maclist db, bwdpi monitor info, get wlan
radio status, agApi iptable nat addUpnpRule, get wlan mode, web
del pptpd user, and get site survey result).

Test Number
Temperature

0 0.5 1 1.5

#1 77.8% (7/9) 77.8% (7/9) 88.9% (8/9) 55.6% (5/9)

#2 77.8% (7/9) 55.6% (5/9) 66.7% (6/9) 66.7% (6/9)

#3 77.8% (7/9) 55.6% (5/9) 33.3% (3/9) 44.4% (4/9)

#4 66.7% (6/9) 66.7% (6/9) 44.4% (4/9) 22.2% (2/9)

#5 55.6% (5/9) 44.4% (4/9) 44.4% (4/9) 55.6% (5/9)

#6 66.7% (6/9) 55.6% (5/9) 44.4% (4/9) 77.8% (7/9)

#7 66.7% (6/9) 66.7% (6/9) 66.7% (6/9) 55.6% (5/9)

#8 44.4% (4/9) 55.6% (5/9) 55.6% (5/9) 55.6% (5/9)

#9 66.7% (6/9) 44.4% (4/9) 66.7% (6/9) 55.6% (5/9)

#10 55.6% (5/9) 77.8% (7/9) 66.7% (6/9) 33.3% (3/9)

Average 65.6% (59/90) 60% (54/90) 57.8% (52/90) 52.2% (47/90)

Variance 0.99 1.16 2.18 2.01

remaining 6 functions were inaccurate, we rechecked
them manually. All of them are false positives and in-
clude three different functions: get site survey result,
agApi iptable nat addUpnpRule and get wlan mode. It
is interesting that the initial results of the latter two were
correct, but incorrect results were returned after double-
check, which means double-check sometimes makes the
LLM question its correct results and make mistakes.
Executing double-check multiple times until the LLM
responds the same determined result can alleviate this
problem.

Then, we sent these three functions to Chat-
GPT 4.0 again and asked the analysis process.
For get site survey result, the LLM returned the
correct result this time, which means that the
performance of ChatGPT is fluctuating. For
agApi iptable nat addUpnpRule, all input parame-
ters are of type int and cannot be exploited, but the
LLM sometimes does not consider data types. For
get wlan mode, the input parameters cannot be directly
propagated to the sink function, but the LLM thought
that one of these parameters can influence executed
commands by buffer overflow. However, this way is not
feasible after manual check.

The impact of temperature parameter. The temper-
ature parameter of ChatGPT can control the creativity
and diversity of returned results because it decides what
sampling temperature to use. Higher values make re-
sults more random, while lower values make them more
focused and deterministic. To overcome the instability
mentioned above, we selected 9 sensitive library func-

Table 3: Comparison with EmTaint. For each sample, we list the total
number of alerts produced by EmTaint with and without SLFHunter
(#Alerts), the total number of true positives verified by us (#TP) and
the total time.

Vendor Model Binary
Emtaint EmTaint with SLFHunter

#Alerts #TP Time (s) #Alerts #TP Time (s)

ASUS

TUF-AX3000 V2 httpd 1 0 118.6 5 2 310.9

RT-AC66U B1 httpd 0 0 75.6 4 4 134.4

RT-AX86U PRO httpd 2 0 208.2 8 4 418.1

GT-AC2900 httpd 0 0 82.3 7 7 703.1

Wavlink
WN575A3 adm.cgi 0 0 4.4 8 8 20.2

WN572HG3 adm.cgi 2 0 13.8 4 0 53

Tenda

AC9 V3.0 httpd 0 0 1933.4 6 5 1832.9

AC9 V1.0 httpd 0 0 1209.1 3 2 1220.1

AC18 V1.0 httpd 0 0 1389.8 3 2 1414.9

AC15 V1.0 httpd 0 0 463.9 3 2 489.1

NETGEAR
R6700 httpd 2 1 761.1 4 3 822.2

R7000 httpd 3 1 422.6 5 3 374.6

XR300 httpd 3 1 252.4 5 3 295.7

Total - - 13 3 6935.2 65 45 8089.2

tions to evaluate the impact of temperature. These 9
functions are difficult for ChatGPT to analyze because
the returned results of them were incorrect before or af-
ter double-check in the experiment introduced above,
which means that the analysis results of ChatGPT on
these functions have randomness and they are suitable
as samples for this evaluation.

The range of temperature parameter is 0 to 2 and er-
rors will happen sometimes when it is set over 1.8. To
evaluate the impact of the values of temperature, we
set it to 0, 0.5, 1, and 1.5 respectively and analyzed
each sample with each value 10 times. The average and
variance of the accuracy of 10 tests for each value are
shown in Table 2. According to the results, the higher
the value, the lower the accuracy, and the more unsta-
ble it tends to be. When the temperature is set to 0,
ChatGPT performs best in taint analysis, but it is still
not so accurate and stable for specific functions (e.g.,
get wlan mode and agApi iptable nat addUpnpRule).
Nevertheless, we believe that the development of LLM
technology can alleviate these problems in the future.

5.3. Comparison with EmTaint
For each sample with SLFs, we detected CI

vulnerabilities leveraging EmTaint with and without
SLFHunter. This experiment was conducted in the
docker container provided by EmTaint in a Linux vir-
tual machine with a 4-core CPU and 8 GB RAM.

Among these 40 samples with SLFs, SLFHunter can
help EmTaint find more alerts in 13 samples with the
help of SLFs. We verified these alerts by manual
reverse-engineering. If the tainted data can be propa-
gated from user input points that can be controlled by
adversaries to functions responsible for command exe-
cution without proper constraints, we consider it a true
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positive bug. The results of these 13 samples are shown
in Table 3.

According to the results, EmTaint with SLFHunter
produced 65 alerts and 45 of them are true positives.
SLFHunter helped EmTaint find 42 additional verified
CI vulnerabilities. 25 of them are zero-day vulnerabili-
ties and we are reporting them to the vendors. The de-
tails of these vulnerabilities are shown in Appendix B.

False Positives. The false positives in Function Anal-
ysis with LLM Module did not bring any false posi-
tives to the overall results. All of the 20 false alerts are
caused by the limitations of EmTaint. The main rea-
son is that EmTaint cannot rigorously check the con-
straints for command injection vulnerabilities, which
means that some tainted data can be propagated from
source to sink, but it cannot be exploited to run arbitrary
commands due to sanitization. This is a common chal-
lenge for single-binary taint analysis tools because secu-
rity checks may be implemented in custom library func-
tions. Additionally, we find that EmTaint marks getenv
as a common source function, but it is not easy to con-
trol a specific environment variable, which also caused
two false alerts on our dataset.

In terms of efficiency, searching for sensitive func-
tions and waiting for the results returned by ChatGPT
requires additional time, which leads to EmTaint run-
ning slower after SLFHunter module is added. How-
ever, the maximum increase in time does not exceed 11
minutes and the average increase is only 89 seconds on
these 13 samples, which is acceptable. For Tenda AC9
V3.0 and NETGEAR R7000, EmTaint with SLFHunter
even costs less time due to shorter execution time of
EmTaint after the addition of new sink functions.

In summary, SLFHunter has been proven to help ex-
isting tools find more CI vulnerabilities at an acceptable
cost.

5.4. Combination with FITS

When checking the results of SLFHunter, we found it
missing a vulnerability in NETGEAR XR1000v2. This
sample calls a custom function sub 29CD8 similar to
web get (shown in Listing 2) to process user inputs.
This function is implemented in the target binary, but
EmTaint cannot propagate tainted data correctly in this
function because the data flow is too complex. Liu et
al. [15] also noticed this challenge and proposed FITS
to alleviate this problem. They name functions similar
to web get and sub 29CD8 intermediate taint sources
(ITSs). FITS can infer ITSs based on function behav-
ior features and mark them as new taint sources to help
existing taint analysis tools find more vulnerabilities.

Table 4: Results of combining FITS and SLFHunter. For each sample,
we list the total number of alerts and true positives (TP/Alert) and the
total time.

Emtaint
with FITS

EmTaint
with SLFHunter

EmTaint
with both

Vendor Model Binary TP/
Alert

Time
(hh:mm)

TP/
Alert

Time
(hh:mm)

TP/
Alert

Time
(hh:mm)

Cisco RV130X 1.0.3.55 httpd 0/1 4:07 0/0 0:04 0/1 4:08

D-Link DIR-878 prog.cgi FITS crashed

LB-Link WR9000 goahead FITS crashed

Linksys E9450 httpd 0/0 14:13 0/0 0:05 2/2 14:17

R6700 httpd 1/4 17:48 3/4 0:14 3/6 17:49

R7000P httpd 0/3 22:10 0/1 0:10 0/3 22:11NETGEAR

XR1000v2 httpd FITS crashed

AC9 V1.0 httpd 0/0 6:13 2/3 0:20 14/19 6:13
Tenda

AC18 V1.0 httpd 0/0 5:27 2/3 0:24 14/19 5:28

Wavlink WN575A3 adm.cgi FITS crashed

Total - - 1/8 69:58 7/11 1:17 33/50 70:06

To shorten the length of the data-flow path from the
taint source to the sink, SFLHunter focuses on sink
functions and FITS focuses on source functions, which
means that new vulnerabilities found by them are dif-
ferent. Therefore, the combination of them may be in-
teresting. To verify this idea, we incorporated FITS into
SLFHunter and did a small-scale experiment on 10 sam-
ples randomly selected from our dataset. In this experi-
ment, FITS was run in a server with a 8-core CPU and
64 GB RAM.

We run FITS to identify possible ITSs and import
true positives into EmTaint manually first. Then, we
run SLFHunter to identify SLFs and import them into
EmTaint automatically to conduct taint analysis. The
results are shown in Table 4. FITS crashed when an-
alyzing 4 samples due to unknown bugs. Among the
remaining 6 samples, FITS can help SLFHunter find ad-
ditional CI vulnerabilities in 3 samples, 2 of which are
similar. The details of them are shown in Appendix C.

According to the results, although EmTaint with FITS
and SLFHunter discovered 26 more verified vulnerabil-
ities than EmTaint with SLFHunter, the total time in-
creased by over 68 hours, which leads to a significant
decrease in efficiency. Additionally, even if FITS can
finish analyzing Wavlink WN575A3, it cannot identify
web get as an ITS because it also ignores DLLFs and
only analyzes functions implemented in the target bi-
nary.

False Positives. The main reason for false alerts caused
by FITS is that the ITSs that are not executed are also
marked as taint sources. FITS defines ITSs as custom
functions that process user input received via common
source functions and return a part of the input to be
used by other functions. This definition is similar to
taint propagation functions rather than taint sources. For
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1 int __fastcall gen_jffs_backup_profile(const char *a1, const char *a2)
2 {
3 ...
4 for ( i = (const char **)jffs_backup_profile_t; *i; i += 6 )
5 {
6 if ( !strcmp(a1, *i) )
7 {
8 snprintf((char *)&v6, 0x40u, "/jffs/%s", i[1]);
9 if ( !check_if_dir_exist(&v6) )

10 return 400;
11 snprintf((char *)&v8, 0x400u, "echo '%s' >> %s", i[3], "/jffs/exclude_lists");
12 system((const char *)&v8);
13 snprintf((char *)&v8, 0x400u, "tar czvf %s -C /jffs -X %s %s", a2, "/jffs/exclude_lists", i[1]);
14 system((const char *)&v8);
15 unlink("/jffs/exclude_lists");
16 return 200;
17 }
18 }
19 return 200;
20 }

Listing 7: Decompiled code of custom library function gen jffs backup profile (simplified).

example, an abandoned function that is not executed
by the target binary calls an ITS. FITS marks this ITS
as a new taint source and can find a vulnerability in
this function, but this vulnerability cannot be exploited
because the user input cannot be propagated into this
function. Therefore, the correct implementation should
mark ITSs as taint propagation functions and can reduce
12 false positives.

In conclusion, combination with FITS can alleviate
the limitation of EmTaint and help SLFHunter discover
more vulnerabilities, but there is still room for improve-
ment. This interesting exploration not only proves the
scalability of SLFHunter, but also demonstrates the fea-
sibility of shortening the path between taint sources and
sinks as a possible research direction of taint analysis.

6. Discussion

In this section, we discuss various caveats and limita-
tions of our technique, and future directions.

Incorrect Data Type. ChatGPT 4.0 is not suitable for
directly analyzing binaries, so we send the decompiled
code to it for analysis, which leads to the analysis re-
sults also relying on the performance of decompilers.
However, due to information loss during the compila-
tion process, even mainstream disassemblers (e.g., IDA
Pro [21], Ghidra [23]) may make mistakes in identify-
ing parameters of functions and their data types (such
as identifying char * as int), which can affect the ac-
curacy of our approach. Therefore, although we found
that ChatGPT sometimes does not consider data types
when performing taint analysis, we did not add relevant
restrictions in the prompt. Hopefully, it’s possible for
LLMs to analyze assembly code directly in the near fu-
ture [24, 25].

External Data Sources. To reduce false positives, we
require LLMs to ignore external data sources other than
the input parameters, which means that we assume that
other sources in the library functions cannot be con-
trolled by users by default. For example, in the custom
library function gen jffs backup profile shown in List-
ing 7, input parameter a1 can indirectly influence *i
(line 4-6), which is part of jffs backup profile t array.
If users can control the content of jffs backup profile t,
a1 can cause CI. However, due to the missing informa-
tion of jffs backup profile t, the response of ChatGPT
4.0 is “Yes: a2.” after double-check, which is a more
conservative result.

Heterogeneity of Firmware. Different firmware im-
ages from different vendors implement web services
with various frameworks. During the experiment, we
found that most firmware images do not contain web
service binaries that call many custom DLLFs. Their
developers tend to implement the features of web ser-
vices with common library functions, rather than defin-
ing and calling custom library functions. The het-
erogeneity makes our approach only effective in the
firmware of specific vendors (e.g., ASUS, Wavlink,
Tenda and NETGEAR).

Fortunately, SLFHunter is a scalable approach that
will be enhanced continuously with the development of
LLM technology, static taint analysis, and decompila-
tion techniques.

Future Work. In addition to CI sink functions, lever-
aging LLMs to search for potential taint propagation
functions (e.g., web get in Wavlink routers) and taint
sink functions for other types of vulnerabilities from
custom DLLFs is also an interesting idea. However,
they are more complex because they do not have sig-
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nificant and unique features for quick filtering or cannot
be judged for security solely by analyzing the code of
a single function. The identification method based on
function behavior similarity proposed by FITS may be
another way to find these functions. Based on the find-
ings of SLFHunter and FITS, we believe that shortening
the path between taint sources and sinks can be one of
improvement directions of taint analysis in the future.

7. Related Work

Static Taint Analysis for Embedded Firmware.
Karonte [13] can efficiently detect multi-binary buffer
overflows and denial-of-service vulnerabilities by mod-
eling and tracking multi-binary interactions, but did not
consider CI vulnerabilities. FITS [15] can infer func-
tions that process user inputs based on function behav-
ior similarity, and mark them as new taint sources to
shorten the data-flow path from taint sources to sinks.
Similar to our work, this method can also help existing
tools find more vulnerabilities, but it focuses on custom
taint source functions and ignores DLLFs. SaTC [14]
can infer taint sources based on keywords shared be-
tween the front-end and back-end of web services and
detect dangerous use of untrusted input, but may miss
taint sources whose keywords cannot be found in front-
end files. Cheng et al. [26] proposed a binary firmware
data flow analysis approach that generates data depen-
dency through identifying interprocedural data flows,
pointer alias and similarity of the data structure lay-
out to eliminate the influence of complex binaries. In
2023, they proposed another static approach for taint-
style vulnerabilities detection in Linux-based embedded
firmware named EmTaint [6]. This approach can imple-
ment indirect call resolution and accurate taint analysis
by SSE-based on-demand alias analysis. EmTaint can
find more vulnerabilities with high accuracy in less time
than state-of-the-art tools such as Karonte and SaTC,
but cannot find those caused by custom DLLFs because
it only analyzes the target binary.

Command Injection Vulnerability Detection in Em-
bedded Firmware. IoTCID [27] improved fuzzing for
CI vulnerabilities by generating fuzzing samples based
on the logic analysis of front-end files and intelligent
feedbacks from back-end programs. Yu et al. [28]
discovered higher-order CI vulnerabilities (HOCIVs),
which means that adversaries abuse an interface to store
the injection payload and later use it in a command in-
terpreter through another interface. They presented an
approach combining fuzzing with dynamic data flow
tracking named ReLink, which can identify HOCIVs by

detecting data stores that would be transferred to com-
mand interpreters. However, the efficiency of these two
tools is limited because they rely on real-world devices.
In contrast, CINDY [29] is a sink call-site classification
method to accelerate the CI vulnerability discovery in
embedded firmware with static backtracking analysis. It
can improve the efficiency of SaTC by removing secure
sink functions whose parameters are derived from con-
stant strings. However, this tool leverages a fixed sink
list, which makes it impossible to find CI vulnerabilities
caused by custom library functions.

Application of LLMs in Vulnerability Detection.
Several previous studies [18, 19, 17] have evaluated
the performance of LLMs in vulnerability detection and
confirmed the feasibility of this direction. Zhang et
al. [30] studied the impact of prompts on the perfor-
mance of ChatGPT in software vulnerability detection.
Li et al. [31] utilized ChatGPT to create summaries of
functions automatically to enhance existing tool UBI-
Tect. Similar to our work, Liu et al. [32] tried to lever-
age LLMs to perform taint analysis. However, they en-
trust LLMs to identify taint sources, identify sink func-
tions, and perform taint analysis, which results in sig-
nificant resource consumption of LLMs, especially for
large binaries with thousands of functions. Our work
only hands over time-consuming steps in traditional
taint analysis to LLMs to minimize costs and improve
efficiency. They also take DLLFs into consideration,
but choose to judge their security just based on function
names, which is not rigorous.

8. Conclusion

In this paper, we propose SLFHunter, an approach
that leverages LLMs to find new taint sink functions
that may cause CI vulnerabilities from library functions
to assist existing static taint analysis tools in discover-
ing more vulnerabilities. We implemented SLFHunter
as a ChatGPT-based module for EmTaint and evaluated
it with 100 real-world Linux-based embedded firmware
samples from 13 well-known IoT vendors. The results
show that our prompts can guide ChatGPT 4.0 to iden-
tify SLFs with 95% accuracy, and our approach can help
EmTaint, a state-of-the-art static taint analysis tool, find
42 additional CI vulnerabilities at an acceptable cost on
our dataset. As a scalable approach, the performance
of SLFHunter can continue to be enhanced with the de-
velopment of LLM technology and static taint analy-
sis by combining with state-of-the-art methods such as
FITS. We hope our work can shed some light on detect-
ing vulnerabilities caused by custom DLLFs and inspire
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researchers to combine LLM with traditional vulnera-
bility detection techniques.
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A. Tested Firmware Samples

Table A1: Results of tested firmware samples.

Vendor Model
ASUS (4) TUF-AX3000 V2*, RT-AC66U-B1*, RT-AX86U PRO*, GT-AC2900*

Cisco (3) RV130X 1.0.3.55•, RV130X 1.0.3.44•, RV32X◦

D-Link (17)
DIR-825B1•, DIR-878•, DIR-836L◦, DIR-822A1◦, DIR-842†, DCS-935L◦, DIR-826LA1◦,

DIR-895L◦, DWR-118◦, DIR-868L◦, DIR-880◦, DIR-885L◦, DIR-890LA1◦, DIR-823G†,

DCS-5020L◦, DAP-1860◦, DIR-859◦

LB-Link (1) WR9000•

Linksys (4) E9450•, EA8100 V2◦, E900◦, EA4500V3◦

Motorola (2) C1†, M2†

NETGEAR (23)
R7000P•, LAX20•, XR1000v2•, R6700*, R7000*, XR300*, AC1450•, R7500†, WNR3500Lv2•,

XR500†, R6200v2•, R6300•, R6400v2•, R7300•, R7800†, R7900•, R8000•, R8300•,

R8500•, R8900†, R9000†, DGN1000◦, DGN2200•

Tenda (11)
AC9V3.0*, AC9V1.0*, WH450A•, AC18V1.0*, AC15V1.0*, RX9Pro†, AC6V1.0◦, FH1201•,

FH1206•, G1V1.0•, W20EV4.0•

TOTOLink (4) A950RG◦, A3700R•, A8000RU◦, T10◦

TP-Link (20)

TL-WR940N†, Archer C7v2◦, TL-WR841Nv14◦, Archer C5v2◦, TD W9970◦, TL-MR3040 V2◦,

TX-VG1530◦, Archer C2◦, Archer C20◦, Archer C50◦, Archer C3200◦, Archer D2,

C2600†, TD-W8968 V4†, TD-W8980◦, TL-MR3020◦, TL-WA701ND V2◦, TL-WA830RE V2◦,

TL-WR1043ND V3◦, TL-XTR7880◦

TRENDnet (5) TEW632BRP◦, TEW-823DRU◦, TEW-752DRU◦, TEW-818DRU•, TEW827DRU†

Wavlink (3) WN575A3*, WN572HG3•, WN579X3C†

Xiaomi (3) 4C†, AX9000◦, Redmi AX5400◦

Legend: † means no “.dynamic” or “.dynstr” section and SLFHunter cannot analyze it.
◦ means SLFHunter cannot find any SLFs.

• means SLFHunter cannot find new vulnerabilities based on SLFs.
* means SLFHunter can find new vulnerabilities based on SLFs.
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B. Vulnerabilities Found by SLFHunter

Table B1: The vulnerabilities found by SLFHunter. We list the custom taint propagation and sink library functions found by SLFHunter, and the
number of 0-day vulnerabilities and the CVE IDs of n-day vulnerabilities discovered based on these functions.

Vendor Model Added taint functions 0-day N-day

ASUS

TUF-AX3000 V2
sqlite Stat hook - CVE-2023-41348

get traffic hook 1 -

RT-AC66U B1
sqlite Stat hook - CVE-2023-41345, CVE-2023-41346, CVE-2023-41347

get traffic hook 1 -

RT-AX86U PRO
sqlite Stat hook - CVE-2023-41345, CVE-2023-41346

get traffic hook 1 -

bwdpi monitor info 1 -

GT-AC2900

sqlite Stat hook - CVE-2023-41345 (3)

get traffic hook - CVE-2023-39780

bwdpi monitor info - CVE-2023-41347

bwdpi monitor ips - CVE-2023-41346

bwdpi monitor nonips - CVE-2023-41348

Wavlink WN575A3
web get 2 -

web get + do system 6 -

Tenda

AC9 V3.0 doSystemCmd 4 CVE-2022-37810

AC9 V1.0
doSystemCmd 1 -

doShell 1 -

AC18 V1.0
doSystemCmd 1 -

doShell 1 -

AC15 V1.0
doSystemCmd 1 -

doShell 1 -

NETGEAR
R6700 devName setDeviceName 1 PSV-2023-0109

R7000 devName setDeviceName 1 PSV-2023-0109

XR300 devName setDeviceName 1 PSV-2023-0109

Total - - 25 17
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C. Vulnerabilities Found by SLFHunter and FITS.

Table C1: The vulnerabilities found by SLFHunter and FITS. We list ITSs found by FITS, SLFs found by SLFHunter, and the number of 0-day
vulnerabilities and the CVE IDs of n-day vulnerabilities discovered based on these functions.

Vendor Model Version Added ITSs Added SLFs 0-day N-day

Tenda
AC9 V1.0&

AC18 V1.0

15.03.05.15

15.03.05.05
sub 2B9D4 doSystemCmd 1

CVE-2022-25441, CVE-2024-30891 (4), CVE-2024-2854, CVE-2024-3880,

CVE-2024-28545, CVE-2023-40839 (2), CVE-2023-40837

Linksys E9450 1.1.00.064 sub 3341C rut doSystemAction 2 -

Total - - - - 3 11
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