
Challenges and Implications of Verifiable Builds for Security-Critical

Open-Source Software

Xavier de Carné de Carnavalet and Mohammad Mannan

Concordia Institute for Information Systems Engineering

Concordia University, Montreal, Canada

{x decarn, mmannan}@ciise.concordia.ca

Abstract

The majority of computer users download compiled software and run it directly on their machine. Ap-
parently, this is also true for open-sourced software – most users would not compile the available source,
and implicitly trust that the available binaries have been compiled from the published source code (i.e.,
no backdoor has been inserted in the binary). To verify that the official binaries indeed correspond to the
released source, one can compile the source of a given application, and then compare the locally generated
binaries with the developer-provided official ones. However, such simple verification is non-trivial to achieve
in practice, as modern compilers, and more generally, toolchains used in software packaging, have not been
designed with verifiability in mind. Rather, the output of compilers is often dependent on parameters that
can be strongly tied to the building environment.

In this paper, we analyze a widely-used encryption tool, TrueCrypt, to verify its official binary with the
corresponding source. We first manually replicate a close match to the official binaries of sixteen most recent
versions of TrueCrypt for Windows up to v7.1a, and then explain the remaining differences that can solely be
attributed to non-determinism in the build process. Our analysis provides the missing guarantee on official
binaries that they are indeed backdoor-free, and makes audits on TrueCrypt’s source code more meaningful.
Also, we uncover several sources of non-determinism in TrueCrypt’s compilation process; these findings may
help create future verifiable build processes.

This article is an extended version of a paper to appear in ACSAC2014 [9].

1 Introduction

When building a software package, the compilation
process generally results in different binary outputs
from one compilation instance to another, especially in
different environments. This leads to various problems
from deduplication to trust issues. In this paper, we
are mostly concerned about the security implications
of such a build process, more specifically for security-
critical software systems, e.g., TrueCrypt, Tor, Bit-
coin Core [3], and Debian. The idea of reproducing
strictly identical builds, i.e., being able to indepen-
dently reconstruct the same binaries as advertised by
the developers using the same source files, has been
suggested only a few years ago; the oldest reference
we can find is a discussion from 2007 on the Debian
mailing list [47]. Several blog articles and tickets in
bug tracking systems refer to this idea as machine-
independent builds [7], deterministic builds [6, 36],
bit-by-bit identical builds [29], idempotent builds [27],
verifiable builds [44, 11], bit-perfect [12], or byte-by-
byte reproducible builds [4, 5]. Some ad-hoc solutions
have been discussed in these references. However, we

could not locate any reference on the verifiability of
open-sourced application binaries in academic litera-
ture, which we believe is a critical, but mostly over-
looked aspect of current open-sourced software distri-
bution infrastructure.

Making a build process deterministic is evidently
non-trivial, as compilers and other tools in the
toolchain have not been designed with this goal in
mind. One of the most common sources of differ-
ence comes from embedded timestamps that reflect
the time of compilation. Two compilation instances
run at one second apart on the same environment may
generate slightly different outputs. More difficult ex-
amples that we have found include variations linked
to the type of the processor used for compilation. File
checksums and cryptographic hashes differ as a result
of such changes. As such hashes are used when com-
paring files or verifying their integrity, it then becomes
irrelevant to compare hashes of different builds of the
same source.

On the other hand, several existing security mech-
anisms rely on randomized build processes to achieve
automated software diversity to restrict large-scale ex-

1

ploitations of software vulnerabilities. Possibly the
best example of security through diversity is address
space layout randomization (e.g., PaX ASLR [42]),
which has been implemented in most widely-used op-
erating systems. Software diversity has a rich history;
see e.g., Forrest et al. [15], and Franz [16] (also the re-
cent survey on diversity [28]). By definition, software
diversity mechanisms are mostly adverse towards de-
terministic builds. Other sources of diversity in bi-
nary code may include compiler optimization tech-
niques, especially the ones independent of source code,
e.g., profile-guided optimization (PGO [32], recently
adopted by Mozilla Firefox [34]).

The importance of deterministic builds has gained
general awareness after classified documents from
the U.S. National Security Agency (NSA) have been
leaked by Edward Snowden starting in June 2013.
The magnitude and depth of the intelligence programs
explained in these documents suggest, among other
things, the ability of the NSA to perform surrepti-
tious man-in-the-middle attacks to infect targeted sys-
tems, or more generally make those systems down-
load malicious software (cf. NSA TURBINE [17] and
the Dual EC DRBG case [30]). It then becomes easy
to insert malicious behavior such as backdoors in bi-
nary files that are downloaded by a majority of users,
particularly on the Windows platform. Man-in-the-
middle attacks can be prevented by the use of TLS-
encrypted communications. However, such protection
does not prevent a malicious or coerced software au-
thor from distributing malicious binaries that do not
match the available source code. Moreover, an au-
thor can digitally sign her software package, e.g., via
an embedded X.509 certificate on Windows executa-
bles; however, this may constitute a single point of
failure (cf. Flame malware [21]). The ability to ver-
ify both the source code and the corresponding exe-
cutable against a consensus could prevent such attacks
on downloaded software.

Security-sensitive applications such as Bitcoin Core
and Tor have started using a deterministic build ap-
proach, to enable decentralized trust through multi-
ple independent signatures from users who compiled
the application and submitted signed hashes of the
output. Both Bitcoin Core and Tor are based on
Gitian [18], a Ruby and bash wrapper for Ubuntu’s
python-vm-builder that was created in 2009 to ensure
the build security and integrity of Bitcoin. In 2013,
the Tor Browser Bundle [36] adapted Gitian for its
purpose, which involves the cross-compilation of the
bundle for Mac OS X and Windows from a Linux envi-
ronment. However, several aspects for a deterministic
build remain unaddressed.

As a case study, we focus on TrueCrypt [45], an

open-source tool capable of on-the-fly encryption.1 It
creates encrypted containers at different levels (file,
partition and entire disk), provides a full disk encryp-
tion (FDE) feature under Windows with pre-boot au-
thentication, and even offers plausible deniability of
hidden partitions. TrueCrypt is available as compiled
binaries for Windows, Linux and Mac OS X, along
with its source code. However, as we mentioned, sim-
ply compiling the source code is not enough to repli-
cate a match with the given binaries. Hence, reviews
and audits of its source code usually discard this dif-
ficult verification step, and may qualify TrueCrypt as
secure, regardless of whether the audited source cor-
responds to the targeted compiled application that is
distributed and used by the majority of users. Our
analysis brings this missing connection and makes the
conclusions of those audits more meaningful. Similar
to other security software, such as Tor, TrueCrypt also
appears to be a perfect target for government surveil-
lance (see [17]). A legitimate question then arises: Are
the binaries provided on the website different than the
available source code and do they include hidden fea-
tures such as a backdoor? In this paper, we provide
the answer to this question and make the following
contributions:

1. We recompiled sixteen versions of TrueCrypt from
v5.0 to v7.1a and analyzed the differences between
our builds and the official ones. These versions
date back from February 2008 up to the latest fully-
functional version released in February 2012.

2. We detail the major challenges we faced to replicate
a close match, and successfully explain the remain-
ing differences, if any. We then conclude that all
of TrueCrypt’s signed binaries directly come from
their respective sources and no backdoor has been
inserted in the binaries.

3. We identify several key sources of non-determinism
to be taken into account to realize deterministic
builds. Our methodology can also help verify other
applications that do not provide a deterministic
build.

4. Finally, we summarize the lessons learned from
other on-going projects that aim at achieving de-
terministic or reproducible builds, and their limita-
tions.

1Even though recently the TrueCrypt developers announced
the discontinuation of their work, other groups are join-
ing effort to keep such an essential tool alive; see, e.g.,
http://truecrypt.ch. The TrueCrypt audit project (http://
istruecryptauditedyet.com) also remains active.

2

http://truecrypt.ch
http://istruecryptauditedyet.com
http://istruecryptauditedyet.com

2 Definition, threats and

challenges

2.1 Definition

The general idea behind a deterministic build is to
record the environment when building the official re-
lease of a project, then replay the behavior of this en-
vironment in later builds to achieve the same results.
This process removes sources of non-determinism that
are out of control in a regular building process. A
broader term has been coined by Debian as repro-
ducible build [10], which emphasizes more on repli-
cating the official build, regardless of the process in-
volved. To reconcile existing terminologies, we suggest
the following definition:

A build is verifiable if any two instances of the build
process produce identical results. This can be achieved
through a deterministic process, in which case both
builds are byte-by-byte identical (and hence the process
is machine-independent); or by matching the builds at
a higher semantic level (e.g., by ignoring unimportant
differences).

2.2 Assumptions

We assume that the compiler is trusted; cf. Thomp-
son [43] (see also [51] for a proposal addressing the
untrusted compiler problem). We also trust the op-
erating system (OS), as it would make no sense to
trust a regular program (e.g., a compiler in this case)
running on an untrusted OS. The hardware platform
including the CPU of the build system is also trusted
(but see e.g., [26]).

We also make the following assumption regard-
ing the multiple independently signed hashes of re-
compiled binaries. If the verification process suc-
ceeds by consensus (i.e., the majority of the signed
hashes match the hash computed by the user), we
assume that malicious signatures cannot represent
a majority in the list of signatures. This assump-
tion does not hold in situations where a powerful at-
tacker can compromise a significant number of signa-
tures (i.e., beyond the majority threshold) with ones
that correspond to malicious binaries. Other veri-
fication schemes could be considered (e.g., see Per-
spectives [50]). Finally, note that deterministic builds
are only interested in matching sources with binaries;
hence, we do not make any assumption regarding the
trustworthiness of the source, which remains under the
scope of source-code audits.

2.3 Threats considered

Our primary consideration is that users do not recom-
pile software packages from the source. Based on it,
we consider the following threats and explain how a
deterministic build prevents against them.

Targeted attacks on binaries. We assume that
an attacker can alter the binaries received by a tar-
geted user (e.g., a coercive government against a Tor
user). Such modifications will remain undetected if
the integrity of the delivery channel or an author’s
signing key is compromised. This attack is applicable
to TrueCrypt, as it could only be downloaded through
an insecure channel without a TLS-encrypted connec-
tion. A deterministic build provides a match between
the source of an application and its compiled version
distributed to users. The match operates at the file
level on the output side, enabling hash comparison of
output files and verification of independent signatures;
such verification enables decentralized trust. Thus, a
user can simply compare the hashes of her copy of the
application against the independently signed hashes,
and identify whether she has been subject to a tar-
geted attack.

Untrusted authors. We assume that an untrusted
open-source developer (coerced or malicious) in charge
of compiling the official build, provides backdoored
binaries for distribution through the official channel
(e.g., website or update server), but leaves the avail-
able source untouched. If targeted attacks on bina-
ries are addressed, developers can no longer provide
binaries that do not match the source, since the of-
ficial signatures would differ from any independent
ones generated by recompiling the application from its
source. Addressing targeted attacks on binaries hence
provides the side effect of protecting against untrusted
authors.

Targeted attacks on the source. We assume that
an attacker can alter the source obtained by a tar-
geted user. Such type of attackers can include the
developers of an application, who wish to mislead a
source reviewer (as in the case of a security audit).
If targeted attacks on binaries are addressed, a user
wishing to recompile the application from the source
benefits from an additional feature: she can also verify
that the source code she obtained corresponds to the
official binaries that have been independently signed.
Indeed, if the hashes of the recompiled binaries do not
match the ones that are independently signed, the user
will detect that she has obtained a different source.
The granularity of the detection of mismatching in-
puts may vary (i.e., a single file or a group of files),
since mismatching binaries can be compiled from sev-
eral input files.

3

Targeted attacks on both the source and bi-

nary files. In a particular case of targeted attack,
we assume an attacker can alter both the source
and binaries for a specific user through a man-in-the-
middle attack, or through the official delivery channel.
Such a user could then be tricked into thinking that
she has verified the official build by recompiling the
source herself and matching her build with the official
downloaded binaries. Even though a TLS-encrypted
channel provides better security against a man-in-the-
middle attack, it does not fully prevent against this
threat (e.g., if altered files are made available through
the official channel for a particular user). Multiple in-
dependent signatures, enabled by deterministic builds,
reduce the probability of such attacks, since the diffi-
culty to compromise several keys would also increase.

A deterministic build thus bridges the gap between
sources and binaries in both directions, i.e., it allows
any user to match binaries to reference sources, and
to match sources to reference binaries. Also, it does
so without involving average users into any technical
details of the compilation process.

2.4 Verifying non-deterministic build

Context. Supposing that all future open-source soft-
ware follow a deterministic build process, one may still
be concerned about past software packages that pro-
vide compiled binaries but were not compiled with ver-
ifiability in mind. In this case, the problem is to match
the sources with the available binaries that are (ide-
ally) signed by the developer, or provided through an
integrity-protected channel to consider them as offi-
cial. TrueCrypt falls in this category, which relates to
the untrusted authors threat.

Feasibility. A naive approach to achieve the ver-
ification of past software is by manually inspecting
each version of a selected application and replicating
a close match, then explaining any remaining differ-
ences. A custom build process could be created for
a specific software instance to make it deterministi-
cally buildable. It would probably be version-specific,
as supporting several versions and handling many po-
tential environments would require designing a uni-
versal deterministic builder. However, manual review
of past software is painstaking, as illustrated by our
case study in Section 3, and adapting a deterministic
build that exactly matches the official binaries may be
sometimes impossible.
Automated verification of past software can also

be very challenging. In case the required resources
(e.g., the compiler information, project configuration
or building steps) are unavailable or not properly iden-
tified, one would need to leverage compiler fingerprint-

ing techniques (cf. FLIRT [22]) to identify the opti-
mization level and other options passed to the com-
piler, along with the correct dependencies. In addi-
tion, software-specific differences (e.g., TrueCrypt in-
staller’s custom checksum, see Section 3.3.3) may pre-
vent generalization of an automated verification tech-
nique for such non-deterministic builds.
Note that verifying future deterministic builds and

past software packages do not share the same require-
ments. For packages whose output is not determin-
istic, the equivalence with the official build needs to
be proven for every build, while waiting for newer ver-
sions that will hopefully leverage a deterministic build
process. This situation also highlights the fact that a
build does not need to lead to an output that is byte-
by-byte identical with the official build to be verifiable.
Superficially variable areas (e.g., timestamps) can be
ignored by a high-level comparison, as opposed to a
simple file hash comparison. As we observed in our
analysis of TrueCrypt in Section 3, the remaining dif-
ferences we faced after setting up a proper environ-
ment were found to be legitimate and explainable, as
opposed to malicious differences.

3 Case study: TrueCrypt

TrueCrypt does not provide any explicit way to verify
its compiled binaries as made available for Windows,
Linux and Mac OS X. Anyone wishing to compile the
sources will get binaries different than the official ones,
as identified by others in the past (see e.g., [38]). This
has led to some speculations regarding the possibility
of having backdoors in the official binaries that cannot
be found easily as they would not be apparent from
the source. This concern has also been raised in a
security analysis of TrueCrypt by the Ubuntu Privacy
Remix Team [46], in which the authors conclude that
they cannot link the result of their code analysis to
the official binaries because it would require “a very
expensive reverse engineering”.

In this section, we present the challenges we faced to
compare all the official releases of TrueCrypt for Win-
dows since February 5, 2008, including versions 5.0,
5.0a, 5.1, 5.1a (and its second release), 6.0, 6.0a, 6.1,
6.1a, 6.2, 6.2a, 6.3, 6.3a, 7.0, 7.0a, 7.1 and 7.1a (Febru-
ary 7, 2012) with the alleged corresponding sources.
An analysis of version 7.1a was also documented by
the first author in an online report [8];2 we reuse parts
of that report here. We present the challenges in the
order as we faced, to highlight the difficulties posed

2The article was discussed in a Slashdot post; see:
http://it.slashdot.org/story/13/10/24/169257/how-

i-compiled-truecrypt-for-windows-and-matched-the-

official-binaries.

4

http://it.slashdot.org/story/13/10/24/169257/how-i-compiled-truecrypt-for-windows-and-matched-the-official-binaries
http://it.slashdot.org/story/13/10/24/169257/how-i-compiled-truecrypt-for-windows-and-matched-the-official-binaries
http://it.slashdot.org/story/13/10/24/169257/how-i-compiled-truecrypt-for-windows-and-matched-the-official-binaries

by the sources of non-determinism, and the reasoning
we followed to get down to the root cause of them.

3.1 Our test environment

To replicate a clean environment with the control over
which compiler and tools are installed, we leverage the
snapshot feature of VMware Workstation. It enables
the creation of virtual machines snapshots that we can
later fork to a different path. This feature is useful
when installing multiple applications in a series, as
we can take a snapshot after the installation of each
of them, and later backtrack to a particular snapshot
to continue installing different versions of the remain-
ing tools in the toolchain. We configured three vir-
tual machines: one running Windows 7 Professional
64-bit edition and the two others running Windows
XP Professional 32-bit edition; in total, we created
45 snapshots, which took about 175GB of disk space.
For our experiments, we mostly use a PC with an In-
tel Core i5-2400 processor; we also performed some
tests on another machine with an AMD FX-8350 pro-
cessor to confirm the origin of yet another source of
non-determinism involving the CPU manufacturer.

3.2 Preparing the environment

3.2.1 Prerequisites

In the latest version of TrueCrypt’s source package,
the readme file specifies the following list of software,
tools, SDK and additional files as requirements (as
quoted from the file): (a) Microsoft Visual C++ 2008
SP1 (Professional Edition or compatible); (b) Mi-
crosoft Visual C++ 1.52 (available from MSDN Sub-
scriber Downloads); (c) Microsoft Windows SDK for
Windows 7 (configured for Visual C++); (d) Microsoft
Windows Driver Kit 7.1.0 (build 7600.16385.1); (e)
RSA Security Inc. PKCS #11 Cryptographic Token
Interface (Cryptoki) 2.20 header files; (f) NASM as-
sembler 2.08 or compatible; and (g) gzip compressor.
For the older versions of TrueCrypt we studied,

older versions of similar tools are required. Going
back to version 5.0, we need to gather Microsoft Win-
dows Driver Kit (WDK) for Windows Vista (build
6000) and version 7.0.0 (build 7600.16385.0), Mi-
crosoft WDK for Windows Server 2008 SP0/SP1
(build 6001.18001/2), Microsoft Visual C++ 2005 SP1
Professional Edition, NASM assembler 0.99 and 2.06,
along with Yasm assembler (no version specified).
The first problem in creating the build environment

is that it requires compilers and resources that can be
difficult to find or are non-free; notably, Visual C++
1.52 that was released 20 years ago (in 1994) and is
only available to MSDN subscribers (which member-

ship costs at least US$1, 200 at the time of the writ-
ing), or for Microsoft Certified Trainers (MCT). In
our case, we first had to search for copies online be-
fore being provided with the original file by an anony-
mous contributor with an MSDN subscription, in re-
action to our online report. Indeed, the academic ac-
cess to MSDN (MSDNAA) of our university was not
privileged enough to access such old software. For
Microsoft Visual C++ 2008 (Visual Studio), one also
needs to have an MSDN subscription since it is now
an old version that is no longer publicly available as a
trial version on Microsoft’s website (although a direct
link to the ISO file on Microsoft’s servers can be found
by crawling the web). This software was accessible via
our MSDNAA access.

Second, Microsoft WDK 7.0.0 and below are no
longer available at Microsoft at the time of the writ-
ing (May 2014) because of newer versions that super-
seded the previous ones, but was available at the time
of the first analysis (October 2013). This also high-
lights a general problem for verifying even relatively
new software, as current dependencies may become
permanently unavailable at any time. Additionally,
there exist three versions of the Windows 7 SDK: ver-
sion 7.0 for .NET Framework 3.5 SP1, v7.0A included
in Visual Studio 2010 only, and v7.1 for .NET Frame-
work 4.0. Also, we do not know a priori to any test
whether a different version than the one in the au-
thors’ environment can lead to changes in the com-
piled output. Fortunately, is it still possible to find
direct links to download old SDKs at Microsoft. For
old WDKs though, only MSDN subscribers can ob-
tain legal copies, which pushed us to search for other
channels due to limitations of our academic access to
MSDN. We wish to thank anonymous contributors for
providing us with the missing pieces that we could not
find. We verified the hashes of the files we received
against the official hashes published on the MSDN
website.

Finally, the RSA PKCS #11 Cryptographic Token
Interface (Cryptoki) 2.20 header files and NASM as-
sembler 2.08 are freely available online. The gzip com-
pressor is also available for Windows thanks to the
GnuWin project [19]. The version number used by
the developers is not mentioned. However the latest
GnuWin’s gzip version (1.3.12-1) dates back to 2007,
so we assumed that this version or a compatible one
was used by the original developers. A different com-
pressor or version of that compressor can lead to a
different compression algorithm or file format and re-
sult in a different output. The GnuWin’s version of
gzip (1.3.12-1) fortunately worked for our purpose. We
later found in the source code that gzip.org’s release
was suggested by the developers.

5

gzip.org

Table 1: File names and sizes from our first compila-
tion attempt (VS2008 SP1 without updates) vs. the
original ones

File name
Sizes in bytes

Our build Official build
TrueCrypt.exe 1,507,840 1,516,496
TrueCrypt Format.exe 1,602,048 1,610,704
truecrypt.sys 224,128 231,760
truecrypt-x64.sys 223,744 231,376
TrueCrypt Setup.exe 1,056,768 N/A
TrueCrypt Setup 7.1a.exe 3,432,471 3,466,248

Although not mentioned in the TrueCrypt’s project
readme file but pointed out in [40], the dd tool [23]
is also required during the build process. Some dd
ports for Windows do not behave correctly during the
compilation process (e.g., different arguments are ex-
pected and no output is generated). We first used
an incompatible version (from chrysocome.net) that
achieved incomplete builds. We later found a working
version in the CoreUtils package for Windows [19].

3.2.2 Initial challenges

Once the environment is correctly installed, we can
open the Visual Studio solution file TrueCrypt.sln and
build it in “release” configuration.

Flat comparison. Our first naive attempt takes
place in a virtual machine running Windows 7 Profes-
sional 64-bit edition with the prerequisites installed.
Table 1 shows the sizes of our compiled binaries and
the official ones from v7.1a.
File sizes do not match, leading to different hashes.

If the build process was made deterministic, we would
have a match at this point. First of all, one obvious
reason for the file size difference is the presence of dig-
ital signatures (or lack thereof) that we explain below.
However, there are also a number of other differences
that we explore in this section.
The official binaries are all signed with an embed-

ded X.509 certificate that belongs to the “TrueCrypt
Foundation”, which increases the file size. This is an
issue for the purpose of reproducing an exact match,
since it is impossible to generate a signature for the
binaries on the developers’ behalf. Hence, it is not
possible to reproduce an exact match of any of the bi-
naries if we are not in possession of the official build’s
files. Indeed, the original signatures can be extracted
from the official files and reused in our build as is.
These signatures would be valid if the rest of the files
also matched. Also, note that the installer (TrueCrypt
Setup.exe) is incomplete after compilation. We must
run it with a special flag (-p) to package the other bi-
naries together and output a complete installer named
TrueCrypt Setup 7.1a.exe. In Table 1, we packaged
our own binaries for comparison. To replicate an ex-

act match, the binaries should be signed prior to being
packaged. We therefore ignore the installer until we
can reproduce the other binaries.

Visual Studio updates. The digital signature repre-
sents a small fraction of the binary files (7,631 bytes in
each file in v7.1a), and is placed at the end of the files,
which makes it easy to locate. However, we found that
a byte-by-byte comparison of each file still produces
significant changes, beyond the signature. We then
considered an advanced comparison technique that
attempts to identify matching blocks of bytes, even
if their sizes slightly differ. Such comparison gener-
ally yields a score that represents more accurately the
real content difference. With respect to the official file
sizes and using such a comparison technique,3 we find
60,049 (4.0%) of mismatching bytes in TrueCrypt.exe,
34,746 bytes (2.2%) in TrueCrypt Format.exe, 7,673
bytes (3.3%) in truecrypt.sys, and 7,878 bytes (3.4%)
in truecrypt-x64.sys.
We further investigated additional patches available

for Visual Studio 2008 SP1 that do not change the ver-
sion number of the software but lead to major changes
in the output. In other words, we should restore an
environment that contains the same updates for the
compiler as what the authors had installed when they
compiled the official release. As there is no mention
about which patches were installed in their environ-
ment, we needed to manually go by trial and error.
To reduce the differences between our build and the
official binaries, we figured that we needed to install
all the updates that were available when a particular
version of TrueCrypt was released. The core updates
are KB971092, KB973675, and KB972222 for versions
6.1 to 7.0a, with the addition of KB2538241 for 7.1 and
7.1a. With these only updates installed, we minimize
the differences. Figure 1 shows a visual representation
of the differences between our build and the official
files in the case where no updates are installed, or the
proper updates are installed. This indicates that the
developers had their system up-to-date, however such
observation may not stand in general.
For versions 5.0 to 5.1a that were compiled

with Visual Studio 2005 SP1, a single core up-
date (KB937061) is available, which was released five
months before the release of TrueCrypt v5.0. We
hence installed it before carrying our experiments, un-
like our first tries with more recent versions of True-
Crypt. For versions 6.0 and 6.0a, no update was avail-
able for Visual Studio 2008 at the time of their release.
Thus, for the purpose of verifying official builds, it

is important to use the same exact version of the com-
pilers and tools installed on the developers’ build ma-
chine, since a slight difference can significantly change

3We used Beyond Compare v3 (scootersoftware.com).

6

chrysocome.net
scootersoftware.com

(a) (b) (c) (d) (e) (f)

Figure 1: Visual differences on the binary files between
our build and the official one for TrueCrypt 7.1a using
an advanced comparison technique. (a), (c), (e) and
(f) represent binaries compiled without any updates
for VS2008 SP1 in our build while others are com-
piled with the proper ones. Files in (e) and (f) are
not influenced by such updates. (a) and (b) represent
TrueCrypt.exe; (c) and (d) TrueCrypt Format.exe;
(e) truecrypt.sys; (f) truecrypt-x64.sys. Red areas
represent approximate differences with coarse gran-
ularity (the thinnest red line represents up to 2.8%
differences).

the output binaries.

3.2.3 Build path

The files truecrypt.sys and truecrypt-x64.sys are the
32-bit and 64-bit Windows drivers, respectively, which
take care of all features related to the OS, such as
providing virtual disks and supporting full disk or
system partition encryption. The number of differ-
ences between our build and the official one remains
significant. While investigating them, we found that
these files contain various debug information, includ-
ing the full project path. These debug parameters
are references to a Program DataBase (PDB) debug
info file and are inserted by the linker to match the
corresponding debug file [33]. The short debug sec-
tion in the binaries contains the path of the PDB
debug file, located under the project directory. The
project folder in our test environment was located on
the user’s desktop while the developers had it appar-
ently in c:\truecrypt-7.1a. The difference in the path
length leads to a shift of the remaining data in this
debug section, plus an offset in some addresses that
point to locations in the file. By compiling the soft-
ware again after moving the project directory to the
same location as in the official build, these differences
were gone. Note that, in the other files, there is no de-
bug information and hence no link to the build path.
Hence, the build path can sometimes influence the out-
put and should be taken into account while setting
up the environment. Throughout the 16 versions we
analyzed, the project path usually contains the ver-
sion number and is located in the root of the C drive;
however some project paths are found without a ref-
erence to the version number and/or are located in
an E or T drive. As we found, the project paths
are c:\truecrypt-7.1 for version 7.1, c:\truecrypt-
7.0a for 7.0a, c:\truecrypt for 6.3a, t:\truecrypt for

6.3, c:\truecrypt-6.2a for 6.2a and similar down to
5.1a, e:\testworkspace\truecrypt\main for 5.1, 5.0a
and 5.0.

3.3 Sources of non-determinism

To understand the differences between our compiled
binaries and the original ones, we perform a byte-
by-byte comparison. Below we analyze each file in-
dividually. We mainly focus on the latest version of
TrueCrypt (v7.1a) with all addresses and offsets cited
referring to this version, unless otherwise specified.

3.3.1 TrueCrypt.exe and TrueCrypt For-

mat.exe

Visually from Figures 1 (b) and (d), there are three
main regions that host differences in TrueCrypt.exe.

First region. The first region is located in the
file header, and contains three differing elements.
The first one is at file offset 0x000000F8 that corre-
sponds to the time/date-stamp in the COFF/PE file
header. The second is located at file offset 0x00000148
that corresponds to the checksum in the PE optional
header. Finally, the third one at offset 0x00000188
that corresponds to the certificate table in the optional
data directories header. According to Microsoft doc-
umentation [31], time/date-stamp corresponds to the
time and date the file was created. Since we com-
piled TrueCrypt at a different time than the devel-
opers, this difference is legitimate. Then, the check-
sum corresponds to the image file checksum based on
a Microsoft-specific algorithm [49]. This checksum is
different because our compiled executable has slight
differences that are covered by this checksum, result-
ing in different values, for which we verified the cor-
rectness. Hence, this difference is also legitimate. Fi-
nally, the certificate table contains a certificate data
field, which is a pointer to a certificate in the file; along
with field about the certificate size. This table pro-
vides information regarding the X.509 signature over
the file that is included in the official binaries. Be-
cause we do not have certified binaries, the certificate
table is all zeros, whereas the original file points to
some certificate data at offset 0x00170600 in the file
(see the third region).

Second region. The second region of differences is
located at about two thirds of the file. It corresponds
to a readable time and date written in English and
what seems to be also a timestamp encoded as a 32-
bit integer. Converting this alleged timestamp to a
readable date and time, we find that it matches the
written date, confirming it is simply a timestamp. In-
terestingly, we can deduce the time zone of the compil-
ing machine, since the time written is interpreted with

7

respect to the machine settings while the timestamp is
a POSIX time representing the number of elapsed sec-
onds relative to a reference UTC time. In this case, the
timestamp of the official binary converts to 2012-02-07
09:08:50 UTC while the written date and time reads
“Tue Feb 07 10:08:49 2012”. This informs that the
time zone of the machine which built the executable
was set to UTC+1 (CET).

In the 11 versions from 5.0 to 6.3, more differences
arise in this section. Further investigations reveal that
they are located in the resource section of the ex-
ecutable, and correspond to an Interface Definition
Language (IDL) file compiled by the Microsoft IDL
compiler. The OLE-COM Object Viewer in Windows
SDK can decompile this resource. By comparing our
decompiled IDL resource to the decompiled official
one, only the timestamp and written date remain dif-
ferent, meaning both resources are functionally identi-
cal. Despite our efforts to recreate many possible build
environments, we were unable to reproduce an IDL re-
source that only includes differences in the timestamps
in a way that is visible from the compiled format di-
rectly, as it is the case in later versions of TrueCrypt.

For version 6.3, using the SDK for .NET Framework
3.5 SP1 (v7.0) that was available at the time of release
of this version of TrueCrypt, yields a different Rich
signature (see [37]) in the DOS stub part of the PE
header of TrueCrypt’s executables. The difference re-
sides in the comp.id row number 148 that corresponds
to a subversion 30729 in our case, while the original
file shows a subversion 21022. This indicates that a
component in the toolchain differs. Once we switched
to the latest version (v7.1), this problem was solved
and only the difference in the IDL resource remained.
However, this later version of the SDK was released
7 months after the release of TrueCrypt 6.3, and thus
could not have been used by the developers. One pos-
sible explanation is that the authors had Visual Studio
2010 installed on their system, which comes with the
intermediate version 7.0A of the SDK, and configured
Visual Studio 2008 to use it. However, Visual Studio
2010 was also released 6 months after this version of
TrueCrypt. The only realistic possibility is that the
authors were using Visual Studio 2010 beta 1 or 2
on their machine, which was released 5 months and 2
days, respectively, before TrueCrypt 6.3. They would
have had to configure Visual Studio 2008 accordingly.
We were unfortunately unable to find this beta version
for further tests. This problem demonstrates that the
sources of non-reproducibility can be difficult to iden-
tify and thus difficult to troubleshoot.

Third region. Finally, at the end of the file, the
third region of differences starts at 0x00170600 and
shows us that the original file contains more informa-

tion. Recall from the first region that this offset is
directly pointed to by the certificate table and hence
is related to the digital signature. We can safely ig-
nore the presence of the certificate in the official bi-
naries, since a signature and certificate are normally
harmless (cf. Microsoft’s documentation: “[t]hese cer-
tificates are not loaded into memory as part of the
image.” [31]) Thus, if this section contains malicious
code, it has to be loaded by the program first, which
would be seen in the source code (its review is out of
our scope, though).

It is to be noted that apart from these three unim-
portant mismatches (timestamps, checksum, presence
of certificate), the rest of the files are identical. This
indicates that our TrueCrypt.exe and the official one
are identical. Also, in TrueCrypt Format.exe, we find
the same patterns of difference as TrueCrypt.exe. As
we explained the unimportance of these differences in
the case of TrueCrypt.exe, we can conclude that our
TrueCrypt Format.exe and the official one are also
coming from the same source.

3.3.2 Truecrypt.sys and truecrypt-x64.sys

Apart from the build path issue that we solved when
creating the build environment, other differences re-
main.

In the 32-bit driver, a difference at file offset
0x00000270 corresponds to the time/date-stamp in
the PE headers. File offsets 0x0001EA44 and
0x00034184 show the same timestamp difference.
More specifically, the one at 0x0001EA44 matches
the timestamp location in the debug directory struc-
ture [31], which contains the address of the debug
section. In turns, this debug section is located at
file offset 0x0002CBA8 in the 32-bit driver and offset
0x0002F490 in the 64-bit driver, where another dif-
ference is found (see the next paragraph). Similarly,
the timestamp at offset 0x00034184 matches the loca-
tion of the timestamp in the export directory table.
File offset 0x000002C0 is the optional PE checksum
header, which also differs for the same reason as in
the previous files: the file has slight differences that
lead to a different checksum. File offset 0x00000300
represents the certificate table difference, which as we
explained is expected. The end of the original file con-
tains the certificate.

In the PDB debug section, pointed by the debug
directory previously mentioned, we still find one dif-
ference of 16 bytes starting at 0x0002CBAC. The for-
mat of this section is undocumented, however it is
explained in [20] as containing a signature (the string
“RSDS”), followed by a GUID (Globally Unique IDen-
tifier) that is regenerated in each build and is used by

8

the debugger to link a binary file to its PDB debug
file. Our 16-byte difference matches the location of
the GUID. Next to it is an “age” field followed by the
path of the debug file, which led to a difference we had
previously resolved by using the same project path as
in the official build. As the project was compiled in re-
lease configuration (not in debug configuration), such
information should not be present at all in the output
files. Their presence remains unclear.

In versions 6.3 and 6.3a, the readme file suggests
the use of NASM “version 2.06 or compatible”. How-
ever, if we use version 2.06 during the build process,
NASM will crash when assembling the 64-bit driver.
While investigating this problem, we found a ticket on
the NASM bug tracking system [41] mentioning this
specific issue. The issue has been resolved in 2.08-rc1,
which was released one week before TrueCrypt v6.3’s
realease. One may further correlate this bug ticket
with the internal development of TrueCrypt.

The 64-bit version of the driver, truecrypt-x64.sys,
shows the same patterns. However, in version 6.2 and
6.2a, we observe an additional difference spanning on 5
consecutive bytes at file offset 0x0001CFCB. Contrary
to other differences that we identified so far, this one
does not affect metadata but rather is located in the
.text section of the binary file, which contains the
logic of the driver. Our build reads 0F 1F 44 00 00

while the official build reads 66 66 90 66 90. The
disassembled binary files show a more comprehensive
comparison shown below.

66 66 90 data32 xchg ax,ax

66 90 xchg ax,ax

0F 1F 44 00 00 nop DWORD PTR [rax+rax*1+0x0]

Functionally, both sequences are effectively realizing
No Operation (NOP). These NOPs only serve align-
ment for the remaining code. We can find a partial
explanation for this difference in Intel’s documenta-
tion [24], which lists sequences of various lengths that
realize a NOP (in Table 4-9 entitled “Recommended
Multi-Byte Sequence of NOP Instruction”). Our NOP
corresponds to a 5-byte NOP in this table. However,
we cannot find the official build’s NOP sequence in
this table. The explanation actually lies in the type
of processor used in the build environment. While In-
tel’s documentation recommends 0F 1F 44 00 00 for
a 5-byte NOP, AMD’s documentation [1] recommends
66 66 90 66 90. We can infer that the compiler de-
termines the processor it is running on and adapts
its output accordingly. This hypothesis is confirmed
after we compiled this version of TrueCrypt on a ma-
chine with an AMD processor. The 5-byte NOP was
present as in the official build. We can further deduce
that the developers were using an AMD processor for
the release of versions 6.2 and 6.2a.

3.3.3 TrueCrypt installer

Now that the remaining files have been analyzed and
the differences between our build and the official one
have been explained, we can package the original files
with our compiled installer. After packaging the orig-
inal files with our compiled installer, we obtain an
installer of 3,458,614 bytes, which is close to the origi-
nal installer’s size (3,466,248 bytes). Again, the usual
time/date-stamp, checksum and certificate table dif-
fer, and the original installer has a certificate at the
end of its file. A new difference occurs at 0x0034C632
on 4 bytes that look like a checksum. By investigat-
ing TrueCrypt’s source code, we can find that it is
indeed a checksum. During the packaging of the files,
the installer computes an integrity checksum over its
complete version. At this point, the installer is not
yet signed, which means it does not embed a cer-
tificate and its certificate table is all zeros. How-
ever, after the installer is signed, it itself needs to be
able to recompute the checksum over its unsigned ver-
sion. To achieve this, the installer computes the check-
sum by replacing bytes between file offsets 0x00000130
and 0x000001FF (inclusive) with zeros, so as to zero
out the Certificate Table. This range however con-
tains more information than just the certificate table,
specifically half of the optional PE header and the
whole data directories, including the Export, Import,
Resource, Exception, Base Relation, and Import Ad-
dress tables. In practice, erasing this byte range effec-
tively deletes these fields in the header, and weakens
the coverage of the integrity check. The installer also
truncates the file after the magic word “TCINSCRC”,
which is located right before the checksum in question,
effectively deleting the digital signature. The CRC32
computed over this modified file corresponds to the
alleged checksum we are investigating.

Version 5.1a was released twice; the second edition
was released the same day as version 6.0. This sec-
ond edition repackages the original files with a new
installer derived from the installer of version 6.0. The
main apparent goal was to update the license shown
during the installation. Comparing this new installer
with the installer from v6.0 however shows signifi-
cant differences. Once disassembled, many addresses
differ, some part of the code is changed (mostly for
alignment), and eight resources are completely differ-
ent. As the exact source of this new installer was
never made available, we are left with the option of
reverse-engineering the installer or trying to recreate
its source, based on the knowledge that it is an inter-
mediate version between 5.1a and 6.0. After several
experiments, we concluded that this installer comes
from v6.0 with changes made to VERSION STRING
and VERSION NUM constants to simulate version

9

5.1a. Once compiled, the installer packages the origi-
nal files from v5.1a with the new License.txt file. Inci-
dentally, when using this new installer on a system-
encrypted environment, the bootloader installed by
the installer is in fact the one from v6.0 renamed as
v5.1a (which caused the differences in the resource sec-
tion as several versions of the bootloader exist and
they are gzipped in that section). This brings an-
other source of non-determinism, which is any (al-
legedly unimportant) code modification that the au-
thors made to compile a build without releasing or
documenting them.

3.4 Summary

In this analysis, we showed that the compiled versions
5.0 to 7.1a of TrueCrypt are directly compiled from
the available source code. From a security perspective,
this shows TrueCrypt is not backdoored by the devel-
opers in a way that is not visible from the sources, i.e.,
the provided executables for Windows are not added
with any feature not visible from the sources; address-
ing the untrusted authors’ threat.
From a software engineering perspective, our study

helps identify sources of non-determinism in a sim-
ple Visual Studio project over the years, from which
many findings can be generalized. We now summarize
our experience throughout the 16 versions of True-
Crypt. The most important factor is the version of
the compiler and of the additional resources required
to build the project. We showed that a slight vari-
ation in the version number (or minor update) can
significantly change the output. Then, we revealed a
particular feature in the Microsoft Visual Studio com-
piler that optimizes the alignment of NOPs according
to the recommendations of the manufacturer of the
processor on which the compiler is running, making
the build processor-dependent. We showed that the
project path is sometimes stored in the output and
results in cascading variations due to a shifting effect.
Moreover, the instructions provided by the authors of
the software may not be accurate and lead to incom-
plete builds as we observed with a bug in the ver-
sion of NASM advertised in the readme file. These
instructions may not be precise enough to avoid am-
biguities in version numbers as we experienced with
Visual Studio or Windows SDK; or, they may be in-
complete altogether. In our case, the dd utility was
missing. Incomplete code may also be an issue, as we
saw with the second version of v5.1a’s installer.
Furthermore, embedded timestamps proved to be a

very common source of variations, leading to check-
sum differences. We also showed that the timestamps
and checksums may not be included only once in a
pre-defined location (as in the PE headers), but also

in the resource section of the binary and they may
follow application-specific algorithms (as in the case
of TrueCrypt’s installer). Debug information embeds
unique identifiers that are randomly generated dur-
ing every build. Finally, as embedded digital signa-
tures are impossible to regenerate, they should either
be copied as is from the official build after investiga-
tion of their content, or reside in a separate file to
enable file-based comparison. We emphasize on the
fact that recompiling a project twice on the same en-
vironment does not necessarily exhibit all sources of
non-determinism. One needs to try on different envi-
ronments with various configurations (e.g., heteroge-
neous CPUs and other hardware) to see all the dif-
ferences, if any. Surprisingly, in our analysis, we did
not encounter any differences caused with a different
operating system (we compiled some versions on both
Windows XP and 7).

4 Towards deterministic builds

In this section, we discuss efforts from other projects
involving deterministic builds, and summarize their
findings and lessons learned.

4.1 Gitian for Bitcoin

The most advanced work to date on deterministic
builds is probably the one initiated by Bitcoin, named
Gitian [18], and later adapted by the Tor project
for the Tor Browser Bundle. Gitian provides a vir-
tual environment in which various sources of non-
determinism can be fixed. It is essentially based on
the python-vmbuilder package that builds a Ubuntu
virtual machine, and wraps it with several scripts.
The scripts interact with the virtual machine to in-
stall the required packages, and derive an input script
(called the input descriptor) that will build the given
sources. Gitian sets a defined hostname, username,
uname (system information), build path, toolchain
version and time. The input descriptor contains the
version of the expected Ubuntu VM, the architectures
to build on, the list of packages to install, a reference
time that will be used to fake the time during the
compilation to get rid of timestamp differences, the re-
mote repositories to fetch, and a list of additional files
to transfer into the VM. Finally, a custom script per-
forms the compilation and takes care of the remaining
sources of non-determinism. When the build is fin-
ished, the output additionally contains a list (the out-
put descriptor) of the versions and hashes of all the
dependencies involved during the compilation. Addi-
tional scripts allow for the submission of the resulting
hashes signed, or verify these hashes against existing

10

signatures.
Although many sources of non-determinism are

taken care of by creating a clean environment that
only contains the project to build and the downloaded
dependencies, Gitian is difficult to generalize for other
open-source software, and presents several limitations.
In particular, it requires to be run on a Ubuntu OS
to create a Ubuntu VM. The VM is run by qemu-
kvm by default, a fork of the qemu virtualizer, that
uses a kernel module (kvm) allowing kernel virtual
machines. Such VMs rely on the hardware virtual-
ization capabilities of the CPU (i.e., Intel VT-x and
AMD-V). However, if one does not run Ubuntu on
the physical machine, the outer Ubuntu OS needs to
be run in a VM already, creating the need for a hy-
pervisor with nested VM support for the compilation
process. As nested hardware virtualization is not yet
supported by processors, one must swap qemu-kvm
for LXC containers, which can reduce the performance
and increase the time required to compile a software
package. More importantly, the compilation process
must take place entirely in a Linux environment, re-
quiring cross-compilation to target other platforms.
Thus, Gitian cannot be used to compile TrueCrypt
for Windows, as this application requires particularly
non-replaceable compilers that run only on Windows.

4.2 Gitian for Tor

The Tor Browser Bundle (TBB) [36] compilation pro-
cess builds upon Gitian, and provides a more auto-
mated process. TBB provides a browsing environment
based on a modified version of Mozilla Firefox that au-
tomatically sends traffic through Tor. Various scripts,
along with Gitian input descriptors, take care of the
retrieval and authentication of the sources prior to
compilation. Dependencies are downloaded through
Tor itself, assuming Tor is already installed on the
system (but not the Browser Bundle). This provides
an additional layer of protection against a targeted
attack on the source by providing anonymity to the
downloading user (cf. threat #3). Dependencies are
expected to match hashes that are embedded in the
scripts. Then, dependency libraries are compiled and
packaged in ZIP files, after which the modified Firefox
is compiled and additional extensions are added to it
for the final packages. These steps are divided into
three distinct Gitian input descriptors.
Inside the compiling environment, various scripts

cope with sources of non-determinism that are not
considered by Gitian. For example, they allow the
creation of deterministic ZIP and TAR archives that
would normally include undesirable file timestamps.
As we found, many of these scripts are quick fixes
to make things work, but are not a perfect nor com-

plete solution as of September 2014. In these scripts,
one can notice many “FIXME” or comments such as
“Crappy deterministic zip wrapper”. TBB also must
compile Firefox for all platforms (Windows, Linux
and Mac OS) from a Ubuntu environment, involv-
ing challenging cross-compilation as previously men-
tioned. Finally, Gitian still sometimes produces non-
deterministic output for unknown reasons [36].

4.3 Debian packages

Debian focuses on deterministic package build, as
presented by Bobbio at DebConf’13 [4] and FOS-
DEM’14 [5]. Their approach is still experimental and
is based on a special branch of the package manage-
ment tools (dpkg). As of January 26, 2014, 67% of
6887 source packages were found reproducible. Their
approach is however different than the one taken by
Bitcoin and TBB. Also, instead of simply compiling
an application, the focus is on Debian packages, which
are the result of possibly more complex building steps
including several tools. Instead of relying on resource-
consuming VMs to perform the build, Debian adopts
another philosophy: the problem of non-deterministic
sources is treated at the root. For example, we no-
ticed in our case study that one common source of
non-determinism is the presence of embedded times-
tamps. Fortunately, Linux binaries (ELF format) do
not contain embedded timestamps, contrary to Win-
dows binaries (PE format). However in software pack-
ages, other tools in the toolchain may record times-
tamps. This is the case for gzip, ar, tar, zip, jar,
and javadoc. The approach taken by Debian is then
to patch these tools to add the option to get rid of
timestamps in the tools themselves. Also, to prevent
the project path to be included in binaries compiled
by gcc, a special option can be passed to gcc, through
the CFLAGS variable in the Makefile, that records a
predefined build path in the binaries instead of the real
one. However, this technique presents some incompat-
ibilities, e.g., in build systems that reuse CFLAGS for
other purposes that lead to non-deterministic output
since CFLAGS contains the real path.

Bobbio [5] lists other sources of non-determinism
that we did not encounter. He mentions about the
file order of the readdir() function that is sensitive
to the locale of the environment (whether it is set to
UTF-8 or other languages). Another source difficult to
identify depends “on an accident of filesystem layout
at build time” [10]. A different file order listing can
lead to different archives being created.

11

4.4 Other Linux distributions and soft-

ware

Other Linux distributions have also started their own
process towards reproducible/verifiable builds. Fe-
dora proposes a few scripts to recompile source pack-
ages (SRPM) and compare them against the available
builds [14]. The scripts support recursive verification
that builds dependencies first. The comparison oper-
ates at a higher-level than just comparing the pack-
age hashes. Instead, packages are decomposed, and
individual files are compared, according to an algo-
rithm that takes care of the known semantic of the
file structure. For example, ELF binaries are com-
pared through their disassembled instructions. Thus,
Fedora’s approach is an example of builds that can be
verified, however are not made by a deterministic pro-
cess. OpenSUSE provides build-compare, a script to
compare compiled software packages [35]. The compi-
lation process is however not handled, and the com-
parison process also takes place at a higher-level than
the simple file hash comparison. The first revision of
these scripts dates back from January 2009. NixOS
also attempts to achieve deterministic builds [12]. Re-
producible Build Manager [48] is a tool that aims at
reproducing software packages of multiple Linux dis-
tributions at once. It is based on compilation in a
controlled environment. Finally, Mozilla also noted
the importance of deterministic build and wishes to
bring it to Firefox [13].

4.5 Summary of current efforts

Each of these different open-source projects takes a
different path to tackle the problem of verifiability.
While Bitcoin developers first created Gitian for their
own purpose, which does not generalize well, the adap-
tation by Tor may be a step in the right direction.
Debian, as an operating system, can afford changing
its own tools for the right purpose. Such liberty may
however not exist in heterogeneous environment shar-
ing both open- and closed-source components. Fedora
only focused on comparing two builds, with the under-
lying assumption that only predictable differences will
be present. However, their approach remains naive
as they do not provide a way to recompile a project
for verification. As we observed in our study, it may
not be always possible to automate the verification of
non-deterministic builds. We note nonetheless that a
framework for reconstructing the original environment
may help the verification of current and past software.
We did not find any work in this direction.

5 Related work

Related projects about deterministic and verifiable
builds have been discussed in Section 4. We present
below other attempts to analyze TrueCrypt, which is
the core part of our case study.

The Ubuntu Privacy Remix Team primarily as-
sessed TrueCrypt 7.0a for Linux in 2011, based on
previously unpublished review of past versions 4.2a,
6.1a and 6.3a [46]. They created a tool, tcanalyzer,4

which helps the study of TrueCrypt containers’ head-
ers. This tool was used to verify the correctness of
both the official build and their own build. They re-
port that they could not find mistakes or backdoors
in the encryption or the header format. They fur-
ther reviewed the cryptographic algorithms in True-
Crypt. They argue about the possibility of hiding a
container’s cryptographic keys inside the salt value in
the TrueCrypt headers in Linux or Windows; or, inside
an unused section of the headers in Windows. They
advise to recompile the source rather than using the
official binaries to prevent such attacks. It is worth
noting that in the Linux version, the unused space of
the headers is filled with encrypted zeros, which can be
verified; however, it contains encrypted random data
in the Windows version, which is impossible to distin-
guish from a backdoor version of the keys. Our anal-
ysis proves, at least for the Windows version, that the
binaries do not differ from the source, and hence do
not include such backdoors. The team then presented
the discovery of a weakness in the keyfile algorithm,
by which it is possible to manipulate any file so that
it has no effect when added as a keyfile to encrypt a
container.

Sogeti, a French information technology consult-
ing company, reviewed TrueCrypt 6.0a for Windows,
Linux and Mac OS X, as part of a first-level secu-
rity certification for information technologies (CSPN)
for the French government in 2008 [39]. CSPN is a
security certification formalized by the Central Infor-
mation Systems Security Division (DCSSI), a govern-
ment entity under the authority of the General Secre-
tary for French National Defence. This test is to be
performed in 30 man-days, and is meant to provide
a reference opinion about the security of an applica-
tion (TrueCrypt here). Sogeti’s analysis of TrueCrypt
reported that the cryptographic algorithms were im-
plemented correctly, and provided a positive opinion
about the application in general, even mentioning that
“the product [TrueCrypt] inspires confidence”. How-
ever, several vulnerabilities were found, regarding a
BIOS memory leakage of the password size in case
of a system-encrypted partition, memory leakage of

4https://www.privacy-cd.org/en/using-upr/download

12

https://www.privacy-cd.org/en/using-upr/download

the password after the creation of a volume, memory
leakage of keyfiles path, memory leakage of the XTS
secondary key of a volume after a backup of its header,
and a denial-of-service attack against the TrueCrypt
driver. Several best practices are also suggested to
avoid the identified issues.
In 2013, Amossys proceeded with the same test

against TrueCrypt 7.1a for Windows only [2], build-
ing up on the previous analysis. They also conclude
that the implementation of the main functionalities is
correct. They however point out few vulnerabilities
that remained unfixed since the previous CSPN test,
including the BIOS memory leakage, memory leakage
of the last created volume’s password, and memory
leakage of keyfiles path after a volume is dismounted.
The Open Crypto Audit Project5 mandated iSEC

Research Labs for a security assessment of selected
security-sensitive parts of TrueCrypt 7.1a for Win-
dows in 2014 [25]. iSEC identified 11 vulnerabilities,
including two integer overflow vulnerabilities, possible
leakage of sensitive information from the pagefile, var-
ious internal information leakage, and lack of security
checks in the bootloader. They also propose correc-
tions. However, no serious flaws were found. Adding
our results about the past 16 versions helps to build
trust around TrueCrypt.

6 Conclusion

As few users compile security-critical open-source soft-
ware themselves from the source, there should be
a way to guarantee that the official build is indeed
compiled from the published source. This guarantee
would prevent malicious/coerced authors from insert-
ing backdoors in the compiled version only, and would
also defend against targeted attacks. It can be offered
thanks to a verifiable build that enables reproducing
the official build. Verifiable build can be achieved ei-
ther by a semantic comparison between the official
and recompiled files, an approach taken by Fedora and
openSUSE; or through a deterministic build process,
which can be repeated and would always provide the
same output, hence exactly matching the official build.
However, sources of non-determinism can be difficult
to isolate and reproduce. A perfectly deterministic
build can only be achieved if all variables can be con-
trolled. In our case study, we encountered a source
of non-determinism based on the brand of the CPU
of the building machine, which only showed up after
we dug into several versions of the same application,
and found no documentation about it. This problem
leads to the following conclusion: it is not possible
to ensure deterministic builds over time if the build

5http://opencryptoaudit.org/

process relies on closed-source software for which an
exact documentation is unavailable. Also, through our
analysis of 16 versions of TrueCrypt for Windows, we
can conclude that verifying old software packages that
inherently do not provide a guaranteed deterministic
build, can turn into a forensic case in which one needs
to gather all the appropriate tools that may have im-
pacted the authors’ build, and explain the reasons be-
hind any oddities. In the end, we concluded that the
binary files of TrueCrypt for Windows from version
5.0 to and 7.1a match the available source code. Our
hope is that the challenges as uncovered through our
TrueCrypt case study, and other concurrent projects,
would eventually help guide designing future deter-
ministic/verifiable build processes, which are critical
for trusting security-critical software.

7 Acknowledgments

We are grateful to anonymous ACSAC2014 review-
ers for their suggestions. We also wish to thank the
anonymous contributors for providing copies of old
Microsoft development kits and pointing few addi-
tional details in our analysis. The second author is
supported in part by an NSERC Discovery Grant and
an FRQNT nouveau chercheur grant.

A Appendix

In this appendix, we list the MD5 and SHA1 hashes
of the meaningful files involved in this project.
File: TrueCrypt 5.0 Source.zip
MD5: bfbd2616da3c3a35ff5c90e3e65df159
SHA1: 1d98f8e7130565bb73f525a8f4bba9b766315ad3

File: TrueCrypt Setup 5.0.exe
MD5: a3d94337991b4b84ead758d868408823
SHA1: b0206174b69f2b471f7dcbe9a7b7075247cb0f24

File: TrueCrypt 5.0a Source.zip
MD5: 6910802e7467329c0d87f381d2b901fc
SHA1: 5e1a88e101d601b77aa4c9f3451ab1535464664a

File: TrueCrypt Setup 5.0a.exe
MD5: 4ec2b386f5d786b3017727aaecf28aa8
SHA1: 4ccb2a44ccbc978ca2042b9bc66833f14f13f6d4

File: TrueCrypt 5.1 source.zip
MD5: 9d2198ce9b55a683d6d66166e796a1d0
SHA1: 9bd6abeb2911a612db02d82ecda4ba4a111989aa

File: TrueCrypt Setup 5.1.exe
MD5: df8385f648245ad4ba287089f5ea2b70
SHA1: f55feb7da91c257d3ad3b0a4b01798b1ef06b89c

File: TrueCrypt 5.1a Source.zip
MD5: e969d5e7281c3f2fbc9cd075bb291441
SHA1: 6365b19105873f5bf4e86a6228c63bdf5524cdfa

13

http://opencryptoaudit.org/

File: TrueCrypt Setup 5.1a.exe
MD5: 0b02b6a8b9437f8968cbe8719722079b
SHA1: 182f06a50a5baae19f9393b4c4632cd60f98debe

File: TrueCrypt Setup 5.1a-2.exe
MD5: 9f2c390917d60aa2f729516cd1a6818f
SHA1: 0bbdccaa1a13c6027a44a3c5e449c2c9b2d36484

File: TrueCrypt 6.0 Source.zip
MD5: 388698513e98afed053018b81cf9f371
SHA1: fc81ea593c6555278c94b62a4e9ac8c73dd5069b

File: TrueCrypt Setup 6.0.exe
MD5: ec0827315825a035ff9a4203ddddfef7
SHA1: 3358dc3b94f8f0aa480846643026702f71f5c630

File: TrueCrypt 6.0a Source.zip
MD5: 4b2f6e22f654bd6b93652926eea83290
SHA1: b8f3c5c9112399001d9d51f36f1204910efbd124

File: TrueCrypt Setup 6.0a.exe
MD5: f5291fb74063ac4a57c069996623ea0b
SHA1: 21354e58584ebc97c8d96fcd7afda82b5070f116

File: TrueCrypt 6.1 Source.zip
MD5: 105c51e624a1b96dff20ee56772ed956
SHA1: 268dab57a6eb9bb84c9fe22d9fb612a84cd7759a

File: TrueCrypt Setup 6.1.exe
MD5: 2da0a448db5aa4e4770aecbf0357e008
SHA1: b65d989e1276752b506367ab530fd551bb7ec699

File: TrueCrypt 6.1a Source.zip
MD5: 4f00f836a644251d0d72b7ba32aaa0d5
SHA1: 72aeec5791fe46ffe9e7726451796e3e4f0d099c

File: TrueCrypt Setup 6.1a.exe
MD5: c413ecd820d2f912996ae86327b0d622
SHA1: 03a17dcfe5955f1316dffa2453e004e82ee2eed9

File: TrueCrypt 6.2 Source.zip
MD5: c55272f10b28122d5df8a61c29b84d11
SHA1: f829a33b46a404b33981c799d530e50a7b5a2587

File: TrueCrypt Setup 6.2.exe
MD5: dc41720d117bd0e57288cec56d81ae8a
SHA1: f836459553ed20174ed209cce1a0c700b1e36762

File: TrueCrypt 6.2a Source.zip
MD5: 1fe56a53268484fa969f379d39939c5f
SHA1: 2032aa51fabb6a98ac2943e0845f3021242ba556

File: TrueCrypt Setup 6.2a.exe
MD5: 75ceb941930f7900b6acf3d20944198e
SHA1: dabb0e79b4ae7c45b17494b300396cc4868cb50b

File: TrueCrypt 6.3 Source.zip
MD5: 60750ea11f6c08ef948f5c5aa1273267
SHA1: aa3a52a738e20496ba47fce841883c886718bc4a

File: TrueCrypt Setup 6.3.exe
MD5: 09894a801d343000a06649b5d5bebd4c
SHA1: 5918eee83832432fd51605ee7179964dbed29078

File: TrueCrypt 6.3a Source.zip
MD5: 6c1f585957cb07e58c51732c83dad1e0
SHA1: d21d22754584e419cda332d4e9561145d79d3475

File: TrueCrypt Setup 6.3a.exe
MD5: e14e7bd954482e5f43f9f8ce0ab2f7e2
SHA1: 2a31c146a5a4dbff00884678d8c2eca44928e03d

File: TrueCrypt 7.0 Source.zip
MD5: c8143751e0a8e681fead53e3855d025d
SHA1: ee70ab85801d38f1ca1047bfdd7038c9d135de93

File: TrueCrypt Setup 7.0.exe
MD5: eadd4ae48541b830638f279d83938497
SHA1: 0be2bc7aa1431c4c10eedcf53a234b4959888111

File: TrueCrypt 7.0a Source.zip
MD5: 752479c674bc18d6bcf55d056560f0a7
SHA1: 8f9bf2ae13461fb3bfb4d1f7acb76c7c1c7ed29d

File: TrueCrypt Setup 7.0a.exe
MD5: 354e280c4bb56704e3925770f282588f
SHA1: 9ebe5de6130deae5d361306bf0add7a6789f6fbc

File: TrueCrypt 7.1 Source.zip
MD5: f4fc60d227bc2ed6641415fecc09b6dc
SHA1: 0f053bf5a463c5c48cdcc9b0cb8c9ed3d5aa2fb2

File: TrueCrypt Setup 7.1.exe
MD5: d4b8e358da8f382be1facf2f368a5fb3
SHA1: 5910a05bf671a385c2c5967171aa1c5509a3d3ee

File: TrueCrypt 7.1a Source.zip
MD5: 3ca3617ab193af91e25685015dc5e560
SHA1: 4baa4660bf9369d6eeaeb63426768b74f77afdf2

File: TrueCrypt Setup 7.1a.exe
MD5: 7a23ac83a0856c352025a6f7c9cc1526
SHA1: 7689d038c76bd1df695d295c026961e50e4a62ea

References

[1] AMD. Software optimization guide for AMD64
processors, Sept. 2005.

[2] Amossys. Rapport de certification DCSSI-CSPN-
2013/09, Oct. 2013. http://www.ssi.gouv.fr/

IMG/cspn/anssi-cspn_2013-09fr.pdf.

[3] Bitcoin project. Bitcoin Core, 2014. https://

bitcoin.org/en/download.

[4] J. Bobbio. Reproducible builds for Debian. In De-
bConf’13, Vaumarcus, Switzerland, Aug. 2013.

[5] J. Bobbio. Byte-for-byte identical reproducible
builds? In FOSDEM’14, Brussels, Belgium, Feb.
2014.

[6] Conifer Systems. Build determinism. Blog article
(Oct. 17, 2008). http://www.conifersystems.
com/2008/10/17/build-determinism/.

[7] Conifer Systems. Machine-independent builds.
Blog article (Sept. 15, 2008). http://www.

conifersystems.com/2008/09/15/machine-

independent-builds/.

14

http://www.ssi.gouv.fr/IMG/cspn/anssi-cspn_2013-09fr.pdf
http://www.ssi.gouv.fr/IMG/cspn/anssi-cspn_2013-09fr.pdf
https://bitcoin.org/en/download
https://bitcoin.org/en/download
http://www.conifersystems.com/2008/10/17/build-determinism/
http://www.conifersystems.com/2008/10/17/build-determinism/
http://www.conifersystems.com/2008/09/15/machine-independent-builds/
http://www.conifersystems.com/2008/09/15/machine-independent-builds/
http://www.conifersystems.com/2008/09/15/machine-independent-builds/

[8] X. de Carné de Carnavalet. How I compiled
TrueCrypt 7.1a for Win32 and matched the
official binaries. Blog article (Oct. 21, 2013).
https://madiba.encs.concordia.ca/~x_

decarn/truecrypt-binaries-analysis/.

[9] X. de Carné de Carnavalet and M. Mannan. Chal-
lenges and implications of verifiable builds for
security-critical open-source software. In AC-
SAC’14, New Orleans, LA, USA, Dec. 2014.

[10] Debian Wiki. ReproducibleBuilds. Wiki article
visited on May 21, 2014. https://wiki.debian.
org/ReproducibleBuilds.

[11] Debian Wiki. SameKernel. Wiki article visited
on May 21, 2014. https://wiki.debian.org/

SameKernel.

[12] E. Egorochkin. Deterministic (bit-perfect)
builds, June 2013. nix-dev mailing list. http://
lists.science.uu.nl/pipermail/nix-dev/

2013-June/011357.html.

[13] B. Eich. Trust but verify. Blog article (Jan.
11, 2014). https://brendaneich.com/2014/01/
trust-but-verify/.

[14] Fedora Project. Reproducible builds for
Fedora. https://github.com/kholia/

ReproducibleBuilds.

[15] S. Forrest, A. Somayaji, and D. H. Ackley. Build-
ing diverse computer systems. In HotOS’97, Cape
Cod, MA, USA, May 1997.

[16] M. Franz. E unibus pluram: Massive-scale
software diversity as a defense mechanism. In
NSPW’10, Concord, MA, USA, Sept. 2010.

[17] R. Gallagher and G. Greenwald. How the NSA
plans to infect ‘millions’ of computers with mal-
ware. News article (Mar. 12, 2014). https://
firstlook.org/theintercept/article/

2014/03/12/nsa-plans-infect-millions-

computers-malware/.

[18] Gitian.org. Gitian: a secure software distribution
method, Oct. 2009.

[19] GnuWin project. CoreUtils and gzip for Win-
dows. http://sourceforge.net/projects/

gnuwin32/.

[20] J. Gordon. The RSDS pdb format, 2010. http://
www.godevtool.com/Other/pdb.htm.

[21] A. Gostev. ’Gadget’ in the middle: Flame
malware spreading vector identified. Blog
article (June 4, 2012). https://securelist.

com/blog/incidents/33081/gadget-in-the-

middle-flame-malware-spreading-vector-

identified-22/.

[22] Hex-Rays.com. Fast library identification and
recognition technology, Feb. 2012. https://

www.hex-rays.com/products/ida/tech/

flirt/index.shtml.

[23] IEEE and The Open Group. dd. The Open Group
Base Specifications Issue 7.

[24] Intel. Intel 64 and IA-32 architectures software
developer’s manual, Feb. 2014.

[25] iSEC. Open Crypto Audit Project - TrueCrypt -
Security assessment, Apr. 2014.

[26] S. T. King, J. Tucek, A. Cozzie, C. Grier,
W. Jiang, and Y. Zhou. Designing and im-
plementing malicious hardware. In USENIX
LEET’08, San Francisco, CA, USA, Aug. 2008.

[27] H. Kirsch. The theory of build systems,
Sept. 2013. http://www.pifpafpuf.de/

BuildTheory.html.

[28] P. Larsen, A. Homescu, S. Brunthaler, and
M. Franz. SoK: Automated software diversity. In
IEEE Symposium on Security and Privacy, San
Jose, CA, USA, May 2014.

[29] E. Lippert. Past performance is no guarantee
of future results. Blog article (May 31, 2012).
http://ericlippert.com/2012/05/31/past-

performance-is-no-guarantee-of-future-

results/.

[30] J. Menn. Exclusive: NSA infiltrated RSA secu-
rity more deeply than thought - study. Reuters
news article (Mar. 31, 2014). http://www.

reuters.com/article/2014/03/31/us-usa-

security-nsa-rsa-idUSBREA2U0TY20140331.

[31] Microsoft. Microsoft Portable Executable and
Common Object File Format specification v8.3,
2013.

[32] Microsoft. Profile-guided optimizations, 2013.
http://msdn.microsoft.com/en-us/library/

vstudio/e7k32f4k.aspx.

[33] Microsoft. Specify symbol (.pdb) and source
files in the Visual Studio Debugger, 2013.
http://msdn.microsoft.com/en-us/library/

ms241613.aspx.

15

https://madiba.encs.concordia.ca/~x_decarn/truecrypt-binaries-analysis/
https://madiba.encs.concordia.ca/~x_decarn/truecrypt-binaries-analysis/
https://wiki.debian.org/ReproducibleBuilds
https://wiki.debian.org/ReproducibleBuilds
https://wiki.debian.org/SameKernel
https://wiki.debian.org/SameKernel
http://lists.science.uu.nl/pipermail/nix-dev/2013-June/011357.html
http://lists.science.uu.nl/pipermail/nix-dev/2013-June/011357.html
http://lists.science.uu.nl/pipermail/nix-dev/2013-June/011357.html
https://brendaneich.com/2014/01/trust-but-verify/
https://brendaneich.com/2014/01/trust-but-verify/
https://github.com/kholia/ReproducibleBuilds
https://github.com/kholia/ReproducibleBuilds
https://firstlook.org/theintercept/article/2014/03/12/nsa-plans-infect-millions-computers-malware/
https://firstlook.org/theintercept/article/2014/03/12/nsa-plans-infect-millions-computers-malware/
https://firstlook.org/theintercept/article/2014/03/12/nsa-plans-infect-millions-computers-malware/
https://firstlook.org/theintercept/article/2014/03/12/nsa-plans-infect-millions-computers-malware/
http://sourceforge.net/projects/gnuwin32/
http://sourceforge.net/projects/gnuwin32/
http://www.godevtool.com/Other/pdb.htm
http://www.godevtool.com/Other/pdb.htm
https://securelist.com/blog/incidents/33081/gadget-in-the-middle-flame-malware-spreading-vector-identified-22/
https://securelist.com/blog/incidents/33081/gadget-in-the-middle-flame-malware-spreading-vector-identified-22/
https://securelist.com/blog/incidents/33081/gadget-in-the-middle-flame-malware-spreading-vector-identified-22/
https://securelist.com/blog/incidents/33081/gadget-in-the-middle-flame-malware-spreading-vector-identified-22/
https://www.hex-rays.com/products/ida/tech/flirt/index.shtml
https://www.hex-rays.com/products/ida/tech/flirt/index.shtml
https://www.hex-rays.com/products/ida/tech/flirt/index.shtml
http://www.pifpafpuf.de/BuildTheory.html
http://www.pifpafpuf.de/BuildTheory.html
http://ericlippert.com/2012/05/31/past-performance-is-no-guarantee-of-future-results/
http://ericlippert.com/2012/05/31/past-performance-is-no-guarantee-of-future-results/
http://ericlippert.com/2012/05/31/past-performance-is-no-guarantee-of-future-results/
http://www.reuters.com/article/2014/03/31/us-usa-security-nsa-rsa-idUSBREA2U0TY20140331
http://www.reuters.com/article/2014/03/31/us-usa-security-nsa-rsa-idUSBREA2U0TY20140331
http://www.reuters.com/article/2014/03/31/us-usa-security-nsa-rsa-idUSBREA2U0TY20140331
http://msdn.microsoft.com/en-us/library/vstudio/e7k32f4k.aspx
http://msdn.microsoft.com/en-us/library/vstudio/e7k32f4k.aspx
http://msdn.microsoft.com/en-us/library/ms241613.aspx
http://msdn.microsoft.com/en-us/library/ms241613.aspx

[34] Mozilla Developer Network. Building with
profile-guided optimization, Aug. 2013. https://
developer.mozilla.org/en/docs/Building_

with_Profile-Guided_Optimization.

[35] openSUSE Build Service. Build result com-
pare script. https://build.opensuse.org/

package/show/openSUSE:Factory/build-

compare.

[36] M. Perry. Deterministic builds part one: Cyber-
war and global compromise. Tor Project article
(Aug. 20, 2013). https://blog.torproject.

org/blog/deterministic-builds-part-one-

cyberwar-and-global-compromise.

[37] D. Pistelli. Microsoft’s Rich signature (undocu-
mented). Blog article (Nov. 11, 2010). http://
www.ntcore.com/files/richsign.htm.

[38] PrivacyLover.com. Analysis: Is there a back-
door in Truecrypt? Is Truecrypt a CIA honey-
pot? Blog article (Aug. 14, 2010). http://www.
privacylover.com/.

[39] SOGETI Infrastructure Services. Rapport
de certification DCSSI-CSPN-2008/03, Dec.
2008. http://www.ssi.gouv.fr/IMG/cspn/

dcssi-cspn_2008-03fr.pdf.

[40] StackOverflow.com. How do I build TrueCrypt on
Windows?, Nov. 2012. http://stackoverflow.
com/questions/13379644/how-do-i-build-

truecrypt-on-windows/13414137#13414137.

[41] The Netwide Assembler bug tracking system.
NASM crashes when building x64 .obj file. Bug
ticket (Oct. 6, 2009). http://sourceforge.net/
p/nasm/bugs/469/.

[42] The PaX Team. Address space layout randomiza-
tion, Mar. 2003. http://pax.grsecurity.net/

docs/aslr.txt.

[43] K. Thompson. Reflections on trusting trust.
Commun. ACM, 27(8):761–763, Aug. 1984.

[44] Tor Project bug track system. Improve software
assurance. Bug ticket (May 31, 2012). https://
trac.torproject.org/projects/tor/ticket/

6008.

[45] TrueCrypt Foundation. TrueCrypt.

[46] Ubuntu Privacy Remix Team. Security analysis
of TrueCrypt 7.0a with an attack on the keyfile
algorithm. Technical report (Aug. 14, 2011).
https://www.privacy-cd.org/downloads/

truecrypt_7.0a-analysis-en.pdf.

[47] M. Uecker. Building packages three times
in a row. Debian mailing list. https://

lists.debian.org/debian-devel/2007/09/

msg00746.html.

[48] N. Vigier. Reproducible Build Manager, 2014.
http://rbm.boklm.eu/.

[49] J. Walton. An analysis of the Windows PE
checksum algorithm, Mar. 2008. http://

www.codeproject.com/Articles/19326/An-

Analysis-of-the-Windows-PE-Checksum-

Algorithm.

[50] D. Wendlandt, D. G. Andersen, and A. Perrig.
Perspectives: Improving SSH-style host authen-
tication with multi-path probing. In USENIX
Annual Technical Conference, Boston, MA, USA,
June 2008.

[51] D. A. Wheeler. Fully Countering Trusting Trust
through Diverse Double-Compiling. PhD thesis,
George Mason University, Oct. 2009.

16

https://developer.mozilla.org/en/docs/Building_with_Profile-Guided_Optimization
https://developer.mozilla.org/en/docs/Building_with_Profile-Guided_Optimization
https://developer.mozilla.org/en/docs/Building_with_Profile-Guided_Optimization
https://build.opensuse.org/package/show/openSUSE:Factory/build-compare
https://build.opensuse.org/package/show/openSUSE:Factory/build-compare
https://build.opensuse.org/package/show/openSUSE:Factory/build-compare
https://blog.torproject.org/blog/deterministic-builds-part-one-cyberwar-and-global-compromise
https://blog.torproject.org/blog/deterministic-builds-part-one-cyberwar-and-global-compromise
https://blog.torproject.org/blog/deterministic-builds-part-one-cyberwar-and-global-compromise
http://www.ntcore.com/files/richsign.htm
http://www.ntcore.com/files/richsign.htm
http://www.privacylover.com/
http://www.privacylover.com/
http://www.ssi.gouv.fr/IMG/cspn/dcssi-cspn_2008-03fr.pdf
http://www.ssi.gouv.fr/IMG/cspn/dcssi-cspn_2008-03fr.pdf
http://stackoverflow.com/questions/13379644/how-do-i-build-truecrypt-on-windows/13414137#13414137
http://stackoverflow.com/questions/13379644/how-do-i-build-truecrypt-on-windows/13414137#13414137
http://stackoverflow.com/questions/13379644/how-do-i-build-truecrypt-on-windows/13414137#13414137
http://sourceforge.net/p/nasm/bugs/469/
http://sourceforge.net/p/nasm/bugs/469/
http://pax.grsecurity.net/docs/aslr.txt
http://pax.grsecurity.net/docs/aslr.txt
https://trac.torproject.org/projects/tor/ticket/6008
https://trac.torproject.org/projects/tor/ticket/6008
https://trac.torproject.org/projects/tor/ticket/6008
https://www.privacy-cd.org/downloads/truecrypt_7.0a-analysis-en.pdf
https://www.privacy-cd.org/downloads/truecrypt_7.0a-analysis-en.pdf
https://lists.debian.org/debian-devel/2007/09/msg00746.html
https://lists.debian.org/debian-devel/2007/09/msg00746.html
https://lists.debian.org/debian-devel/2007/09/msg00746.html
http://rbm.boklm.eu/
http://www.codeproject.com/Articles/19326/An-Analysis-of-the-Windows-PE-Checksum-Algorithm
http://www.codeproject.com/Articles/19326/An-Analysis-of-the-Windows-PE-Checksum-Algorithm
http://www.codeproject.com/Articles/19326/An-Analysis-of-the-Windows-PE-Checksum-Algorithm
http://www.codeproject.com/Articles/19326/An-Analysis-of-the-Windows-PE-Checksum-Algorithm

	Introduction
	Definition, threats and challenges
	Definition
	Assumptions
	Threats considered
	Verifying non-deterministic build

	Case study: TrueCrypt
	Our test environment
	Preparing the environment
	Prerequisites
	Initial challenges
	Build path

	Sources of non-determinism
	TrueCrypt.exe and TrueCrypt Format.exe
	Truecrypt.sys and truecrypt-x64.sys
	TrueCrypt installer

	Summary

	Towards deterministic builds
	Gitian for Bitcoin
	Gitian for Tor
	Debian packages
	Other Linux distributions and software
	Summary of current efforts

	Related work
	Conclusion
	Acknowledgments
	Appendix

