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Abstract—Cloud security frameworks, like OpenSCAP, rely
on vulnerability databases such as the National Vulnerability
Database (NVD) to assess threats, ensure compliance, and man-
age patches efficiently. However, despite their popularity, vul-
nerability databases are not exempt from errors. Prior research
showed inconsistencies between multiple databases, as well as
incorrect software or vendor names, and publication dates. In
this study, we discovered and proposed a systematic approach
to detect a new form of inconsistency whereby entries with
identical or semantically similar vulnerability descriptions are
assigned distanced scores, which can skew risk assessments, and
potentially misguide mitigation strategies. Our analysis identified
12,866 entries suffering from such inconsistencies, highlighting
the most error-prone Common Vulnerability Scoring System
(CVSS) metrics and vulnerability types, as well as the observed
score deviation. We believe our study can bring this inconsistency
issue to the community’s attention and pave the way for further
investigation thereof.

Index Terms—NVD, Security assessment, CVSS Machine
Learning, Vulnerability analysis, Inconsistency in NVD

I. INTRODUCTION

Publicly maintained vulnerability databases, such as the Na-
tional Vulnerability Database (NVD [1]) are widely referenced
in both industry for risk assessment and patch management [2],
[3], and in academia for empirical studies related to software
vulnerabilities, e.g. [4], [5], [6]. In particular, the Common
Vulnerability Scoring System (CVSS) provides a way to quan-
tify the severity level of vulnerabilities into a score via various
metrics, thus enabling comparison and ranking of multiple
vulnerabilities [7], [8]. Such practices assume and depend on
the relative correctness and consistency of the CVSS metrics.

Previous works have already hinted at inconsistencies in
these vulnerability databases. For instance, vulnerable software
versions affected by a vulnerability could be inconsistent
across popular databases [9]. Within NVD itself, researchers
have uncovered a range of reporting inconsistencies including
incorrect labeling of software and vendor names across entries
(sometimes due to typos), invalid publication dates [10],
incomplete list of affected products and reference URLs [11].

In this paper, we bring attention to another form of incon-
sistency within a single vulnerability database involving the
assigned severity score (CVSS base metrics) with respect to
the free-form vulnerability description, which, to the best of
our knowledge, has not been systematically studied by the
community. Intuitively, vulnerabilities described in the same

way should receive similar severity scores (if not the same).
Indeed, as per the instructions for creating descriptions [12],
a CVE description should encapsulate comprehensive details,
uniquely distinguishing each vulnerability. Those utilizing the
database depend on these descriptions not only to grasp the
vulnerability’s essence but also to correlate it with real-world
instances for effective remediation and patch application. An-
alysts also rely on descriptions to assign CVSS base metrics
and a corresponding score.

However, our preliminary study shows that 4.4% of CVE
entries in NVD that share the same description with another
CVE are scored differently.1 For instance, the three entries
CVE-2017-(5807, 5808, 5809) share exactly the same textual
description yet received significantly different scores, ranging
from medium to critical; see an illustration in Figure 1.
In addition to identical CVE descriptions, we also noticed
CVE entries with very similar descriptions but, unexpectedly,
different CVSS base metrics. Such discrepancies harm the
credibility of the database and the accuracy of any work
derived from it. The security team of an enterprise trying to
prioritize patching of severe vulnerabilities can be misled into
under-prioritizing a medium-severity vulnerability although it
may exhibit the same characteristics as a critical vulnerability.

While identifying entries with identical descriptions is easy,
the true extent of such inconsistencies may only be revealed
after finding all descriptions that carry the same meaning. In
turn, simple textual solutions (e.g., edit distance) cannot cope
with the richness of natural language. Conversely, generic Nat-
ural Language Processing (NLP) techniques are not tailored to
a cybersecurity-related vocabulary (e.g., consider “attack” as
a “cause of death” [13]).

In this work, we aim at detecting severity score inconsis-
tencies between vulnerability entries with semantically similar
descriptions at a large scale, study their nature and prevalence,
and identify possible causes. We propose to apply a set of
machine learning-based techniques to divide the vulnerability
entries into semantically similar clusters. We argue that vulner-
abilities within in each cluster should receive similar severity
scores, default of which would indicate score inconsistency.

1Identical description percentage =
∑k

i=1 Ei

/
#NVD Entries , where k is

the number of clusters containing more than one identical description in the
entire NVD database, Ei is the number of entries in the ith cluster.
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Fig. 1: Motivating Example

In the context of describing vulnerabilities, we define se-
mantic similarity as the property when the descriptions of
multiple vulnerabilities possess the same essential information
sufficient to lead to the same severity score. This similarity
naturally covers identical (exactly the same) descriptions.

We first transform the human-readable descriptions into
machine-readable representations (features), based on multiple
models, e.g., pre-trained BERT [14], TF-IDF [15], and cus-
tomized vulnerability information fine-tuned word2vec [13].
Then, we combine clustering algorithms (K-Means clustering
and Agglomerative clustering) to generate semantically similar
clusters based on the obtained features. Clusters are further
broken down by vulnerability type. We leverage VIET [13] to
extract essential entities, e.g., privileges, from the descriptions.
A cluster is deemed inconsistent when vulnerabilities therein
that share identical entities are assigned different CVSS scores.

Our contributions are as follows:

1) We bring attention to the existence of severity scoring
inconsistencies based on descriptions in the NVD.

2) Using clustering approaches and our adapted name entity
recognition (NER) to process the vulnerability descrip-
tions, we develop a framework that can automatically di-
vide vulnerability entries into semantically similar clusters,
which can serve as a foundation for further inconsistency
analysis or security assessment.

3) We conduct a large-scale analysis of 124,034 CVE descrip-
tions and accompanying CVSS v3 scores from the NVD
with our framework, and found that 10.44% of vulnera-
bility entries are affected by inconsistent metrics and/or
descriptions with respect to other similar vulnerabilities.

4) We perform attribution analysis to identify error-prone
CVSS metrics and have uncovered new types of clerical
errors made by analysts while populating CVE entries, in-
cluding mismatching textual attributes with CVSS metrics
and copy-pasting oversights, and found that the privilege
metric is associated with the most frequent discrepancies.

The remainder of this paper is organized as follows.
Section II introduces necessary background information.
Section III details the methodology of clustering and
inconsistency detection. Section IV presents the experimental
details, evaluation and results. Section V conducts a case
study with further discussions. Section VI reviews the related
work with Section VII concluding the paper.

II. PRELIMINARIES

NVD [1] and CVE [16] are related public databases of
software security vulnerabilities. Individuals or organizations
report vulnerabilities to a CVE Program participant, who then
reserves a CVE ID and provides details about the vulnerabil-
ity, such as its type, triggering condition, affected versions,
and a summary description [12]. Each CVE entry also has
CVSS score to gauge its severity. While older entries are
assigned with CVSS v2, the newer CVSS v3 metrics consider
8 indicators, namely: attack vector (AV), attack complexity
(AC), privileges required (PR), user interaction (UI), scope
(S), confidentiality (C), integrity (I) and availability (A). The
scores are derived using version-specific formulas. The final
CVSS score of a vulnerability ranges from 0 to 10. For CVSS
v3, scores are categorized into four severity levels based on
CVSS rating [17]. Scores of 9.0-10.0 are classified as Critical,
7.0-8.9 as High, 4.0-6.9 as Medium, and 0.1-3.9 as Low.

III. METHODOLOGY

In this section, we explain how we detect the severity score
inconsistencies in the NVD by applying several methods to
semantically divide vulnerabilities into smaller clusters based
on their descriptions. Note that at the high level, we resort
to clustering instead of pair-wise comparison because 1) pair-
wise similarity involves complications and is not useful in
practice, e.g., when A is similar to B, B is similar to C but
C is not necessarily similar to A (i.e., no transitivity). 2)
handling the number of combinations (pairs) out of hundreds
of thousands of records is computationally too expensive.
Each entry needs to be compared with every other entry
(time/storage overhead). With our clustering approach, entries
in each cluster can naturally be considered similar and this
similarity is global, as opposed to pair-wise.

A. Semantically Similar Clusters

We utilize clustering algorithms to generate semantically
similar CVE entries based on human-readable vulnerability
descriptions. Clustering algorithms are unsupervised machine
learning techniques that are used to group similar data points
together, resulting in more similar data points in the same
cluster and distant data points in different clusters.

More specifically, we first utilize techniques such as
Word2Vec [18] and TF-IDF [15] to generate numeric represen-
tations of the vulnerability descriptions. Then, the clustering
algorithm, e.g., K-Means clustering, would utilize Euclidean
distance metric to measure the distance between CVE descrip-
tions. The formed clusters include CVE descriptions that share
similar features. The effectiveness of the clustering results
relies on both the chosen clustering algorithm and the selected
features. Although with the development of NLP, pre-trained
models, e.g., BERT [14], can capture the semantic meaning
of human-readable text, the specific cybersecurity context may
still be missing. Section IV-B shows the detailed comparison
of two clustering algorithms with seven features.

To better capture the cybersecurity meaning/context and
enhance precision, we also encode vulnerability types (e.g.,



TABLE I: Running Example (all the CVEs are in the same semantically similar cluster)

CVE ID Description Score Type Vulnerability Entities
CVE-2018-
21166

Certain NETGEAR devices are affected by denial of service. This affects
R6100 before 1.0.1.22, [...] WNR2000v5 before 1.0.0.64.

4.9 Denial Of
Service

denial of service

CVE-2018-
21167

Certain NETGEAR devices are affected by stored XSS. This affects D6100
before 1.0.0.57, [...] and WNR2000v5 before 1.0.0.64.

5.5 Cross Site
Scripting

stored xss

CVE-2018-
21170

Certain NETGEAR devices are affected by a stack-based buffer overflow by
an unauthenticated attacker. This affects EX2700 before 1.0.1.28, [...] and
WN3100RPv2 before 1.0.0.56.

8.8 Overflow stack-based buffer overflow,
unauthenticated attacker

CVE-2018-
21171

Certain NETGEAR devices are affected by a stack-based buffer overflow by
an authenticated user. This affects D6100 before 1.0.0.57, [...] 1.0.2.98.

6.8 Overflow stack-based buffer overflow,
authenticated user

CVE-2018-
21174

Certain NETGEAR devices are affected by a stack-based buffer overflow by
an authenticated user. This affects D6100 before 1.0.0.57, [...] 1.0.0.62.

7.2 Overflow stack-based buffer overflow,
authenticated user

“Buffer Overflow”, “Execute Code”) for further cluster refine-
ment. The vulnerability types are assigned by the analysts,
and it is known that each vulnerability type carries its own
characteristics in the descriptions [9].

Table I shows a running example for our approach. First,
the descriptions for the CVEs are embedded into features for
clustering. The format of the descriptions is the same for
the selected five vulnerabilities. Each description starts with
a common introduction to “NETGEAR devices”, followed by
an introduction of the problem type, culminating with details
about impacted products and versions.

Due to the similar structure and wordings in the description,
the features corresponding to them will be naturally close,
facilitating the clustering algorithm to group them into the
same cluster. Our approach then will further categorize entries
in a cluster based on vulnerability types. The first three
vulnerabilities are associated with different vulnerability types,
Denial of service, Cross site scripting, Overflow, and will be
further separated into different clusters; leaving only CVE-
2018-21170, CVE-2018-21171, and CVE-2018-21174 within
the same group.

B. Inconsistency Detection

After obtaining semantically similar clusters, we notice that
a seemingly minor word may create a considerable impact
on scoring. For example, in Table I, the exploit in CVE-
2018- 21170 is permissible by an “unauthenticated attacker”,
whereas in CVE-2018-21174, only an “authenticated user” can
execute the attack.

These kinds of subtle differences can be challenging to
be captured by the generated sentence embeddings. However,
these words hold paramount importance in the process of
assigning CVSS scores. Specifically, the contrast between an
“unauthenticated attacker” and an “authenticated user” carries
profound implications that significantly influence vulnerability
assessments, e.g., the former does not require privilege, while
the latter does.

To address this challenge, we utilize a tool called VIET [13]
to extract cybersecurity-significant entities for each descrip-
tion within the same cluster. These extracted entities provide
essential information such as privilege, vulnerability vector,
and vulnerability type, which can be loosely correlated with
the metrics of PR, AV, and AC in CVSS, respectively. For
instance, the “unauthenticated attacker” and “authenticated

user” mentioned in Table I identified as privileges, can be
aligned with the PR metric; and “stack-based buffer overflow”
identified as vulnerability types, can be utilized for the AC
metric.

Using VIET to compensate generic NLP-based clustering
with cybersecurity significance, there are also several design
choices to consider. For instance, VIET classifies the entities
into 5 essential entities and 9 supplementary entities. The
latter cover computer-related terms (e.g., version and vendor),
which is not important for determining severity. The 5 essential
entities are determining factors for severity (e.g., privileges
and vulnerability types mentioned above), and thus we further
refine the clusters as follows: all the essential entities have to
match for descriptions to be considered similar. Note that the
actual number of extracted essential entities may vary from
0 to 5. After the processing with VIET, we will have the
semantically similar clusters ready as we defined.

In this paper, an inconsistent cluster is a semantically similar
cluster of CVEs obtained through our clustering and VIET,
where at least one CVE has a different CVSS score than
the rest in the same cluster. As demonstrated in Table I,
the descriptions of CVE-2018-21171 and CVE-2018-21174
are similar and share the same essential entities, “stack-based
buffer overflow” and “authenticated user” but with different
CVSS scores; the former is 6.8 and the latter is 7.2. Those
two entries are considered a case of inconsistency.

IV. EXPERIMENT

In this section, we first provide the experimental setting and
then present our experimental results and evaluation.

A. Experiment Details

The experiments were all developed in Python 3.9 and
executed on a MacBook Pro running macOS Monterey, with
Apple M1 Pro chip and 16GB of RAM.
Dataset. We collected 209,842 vulnerability descriptions in
the NVD from 1999 to March 2023. We discarded entries
listed as REJECT, and kept only those associated with CVSS
v3 metrics, resulting in 124,034 vulnerabilities. Note that our
methodology is also applicable to entries with only CVSSv2,
though note that CVSSv3 metrics are already assigned to all
CVEs from 2017.
Ground-Truth Dataset. To evaluate the effectiveness of the
clustering methods, we randomly sample a subset of 1,000



CVE entries from the past six years (2017-March 2023) and
manually classify them into clusters. This manual classification
requires expert knowledge to identify semantically similar
vulnerabilities based on human-readable descriptions, with
respect to essential information that may affect the CVSS
severity scoring. Two authors independently labeled the data
and labels in disagreement were discussed and resolved to
minimize human errors. The results, 1000 entries manually
divided into semantically similar clusters, are used to evaluate
the correctness of our inconsistency detection.

B. Effectiveness of Clustering Methods

To select an optimal combination of clustering algorithms
and input features to cluster the CVEs effectively, we evaluate
two popular clustering algorithms, namely K-Means clus-
tering [19] and the Agglomerative clustering [20] methods,
using seven features (detailed in Table II). Generally, K-Means
clustering demonstrates efficient performance, but it requires
users to pre-define the number of potential clusters (k) for the
dataset, which can be challenging to determine. Agglomerative
clustering performs slower; however, it offers the advantage
of not requiring users to specify the number of clusters in ad-
vance. To enhance the efficiency of Agglomerative clustering,
we adopted Fast Agglomerative clustering [21], a variant that
utilizes local community search to accelerate the clustering
speed. This approach reduces computational overhead, allow-
ing faster clustering on larger datasets without compromising
clustering quality, making it ideal for our experiments.

Features. The features we considered in this experiment in-
clude vulnerability linguistic model embedding (a customized
Word2Vec embedding trained on vulnerability descriptions,
referred to as V-CBOW as the model is trained based on
the CBOW variant) [13], TF-IDF [15], and BERT [14]. The
V-CBOW features contain vulnerability-specific information
within the vulnerability descriptions, while the TF-IDF fea-
tures only consider word frequencies in a description. Features
from the pre-trained BERT can generate sentence-level embed-
ding that expects to capture the most comprehensive human
language semantics and complex contextual relationships.

Evaluation Methods. After we extract all the features listed in
Table II and Table III, we first perform clustering based on the
Agglomerative clustering. Then, we use the cluster numbers as
the predefined clusters (k) to perform the same experiment in
the K-Means algorithm. Notably, different features may lead
to different clusters; and we maintain the same number of
clusters between both algorithms for fair comparison.

The Normalized Mutual Information (NMI) is used to eval-
uate the performance of each clustering method with different
text features, word frequency, and semantics meaning of the
text [13], [22]. The NMI measures the mutual information
between clustering results and real labels, taking into account
the uneven distribution of labels and clusters. Since our
clustered dataset is unbalanced, it is suitable for evaluating
our clustering results.

Clustering Features K-Means
Clustering

Agglomerative
Clustering

V-CBOW 0.6934 0.6880
TF-IDF 0.7024 0.7781
BERT 0.7333 0.7329

V-CBOW + TF-IDF 0.7892 0.8051
BERT + TF-IDF 0.7957 0.7948

BERT + V-CBOW 0.8158 0.8050
BERT + V-CBOW + TF-IDF 0.8227 0.8100

TABLE II: Evaluation of clustering 1000 CVE entries without
Vulnerability Type Information

Clustering Features K-Means
Clustering

Agglomerative
Clustering

V-CBOW 0.8179 0.8135
TF-IDF 0.8047 0.8358
BERT 0.8867 0.8854

V-CBOW + TF-IDF 0.8512 0.8399
BERT + TF-IDF 0.8392 0.8413

BERT + V-CBOW 0.8762 0.8739
BERT + V-CBOW + TF-IDF 0.8538 0.8418

TABLE III: Evaluation of clustering 1000 CVE entries with
Vulnerability Type Information

Evaluation Results. The results of both clustering algorithms
based on seven different features, with and without vulnera-
bility type information, are presented in Table II and Table III.
We observe that, in general, the inclusion of vulnerability
type information improves the NMI score for both algorithms.
For instance, in Table II, the best feature combination, BERT
+ V-CBOW + TF-IDF, achieves NMI scores of 0.8227 and
0.81 without vulnerability type information. However, when
vulnerability type information is introduced, the NMI scores
increase to 0.8538 and 0.8418, respectively. Interestingly, we
notice that this feature combination performs worse than using
only the BERT feature when vulnerability type information is
added. It might be due to the clustering algorithms giving more
importance to the differences in data types, rendering semantic
and lexical information less necessary for distinguishing data.
Additionally, the classification feature may contain security-
related information, making other features such as V-CBOW
and TF-IDF redundant and resulting in a less optimal outcome
compared to using BERT alone. Overall, both algorithms
demonstrate improved performance when vulnerability type
information is utilized, which validates our choice of including
vulnerability type in the clustering process. Thus, in the
later experiment, Agglomerative clustering with BERT feature
is chosen to cluster the vulnerabilities (although K-Means
algorithm performs slightly better, it is challenging to define
the k value without the help of another algorithm).

C. Effectiveness of Inconsistency Detection

Across all 124,034 CVE entries, after applying the cluster-
ing method with the best performance (Agglomerative cluster-
ing with BERT embedding and vulnerability type information)
and classification of vulnerability type to obtain 9,057 clusters;
in total, resulting in 54,018 CVE entries (we remove the
clusters that contain only one entry as they can not form any



inconsistency). We first perform semantic clustering and literal
clustering on those entries. After utilizing the literal clustering
that screens out the identical descriptions in each cluster, there
are 8034 CVE entries (2,234 identical clusters) left for check
consistency. Those clusters should naturally have the same
severity levels, while we detect that 528 clusters (2,350 CVE
entities) have inconsistent scores.

The semantic clusters consist of the CVE descriptions with
similar sentence structure/meaning. After extracting all the
essential entities in the same cluster, we compare the CVSS
score among the entries sharing identical essential entities.
We remove the clusters with only one entry. In the end,
we identify inconsistencies in 1,574 clusters out of 33,120
clusters, accounting for a total number of 12,866 entries
out of 53,711 entries. We provide further in-depth study in
Section IV-D.
Evaluation Methods. Our ground truth dataset involves multi-
classification challenges, resulting in multiple sets of confusion
matrices. For evaluating global performance, we employ both
macro average and weighted average metrics. The macro
average computes the overall average for all classes, while the
weighted average incorporates class-specific weights, which
is especially useful for addressing significant data imbalances.
These weights can be calculated based on the percentage of
the data ratio for each class. We calculate accuracy, precision,
recall, and F1-score based on macro and weighted averages.
Evaluation Results. Table IV shows our evaluation results.
The macro average and weighted average have the same
accuracy, 0.794. The weighted average shows much higher
results than the macro average in precision, recall, and F1-
score. This may be because the weighted average focuses more
on overall performance, while the macro average emphasizes
average performance across classes. Since the number of
samples in different classes varies a lot, the weighted average
gives more importance of the classes with larger sample sizes,
resulting in a relatively high weighted average value.

Accuracy Precision Recall F1-Score
Macro Average 0.794 0.695 0.646 0.661

Weighted Average 0.794 0.996 0.794 0.852

TABLE IV: Effectiveness of inconsistency detection

D. Inconsistency Analysis

We provide an analysis of the discovered inconsistencies
in literal and semantic clusters. The analysis focuses on
discovering inconsistent CVSS metrics, the inconsistencies in
different vulnerability types, and the trend of inconsistencies
over the past ten years.
Inconsistency in the Literal Match. Figure 2a shows the
inconsistent metrics (the CVSS metric that caused inconsis-
tency in the inconsistent clusters) within the literal matched
clusters. We first obtain the CVSS v3 metrics for each CVE ID
(metrics: AV, AC, PR, UI, S, C, I, A) in the cluster. Then, we
compare each metric value within them. If the value of a metric
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Fig. 2: Inconsistencies in different CVSS metrics and vulner-
ability types (literal)

differs from any other metric values in the cluster, we consider
this particular metric causes inconsistency. Once we finish
comparing the metric values over the 528 inconsistent clusters,
we calculate the occurrence percentage of each metric. This
percentage corresponds to the number of clusters affected by
a particular metric over the total count of inconsistent clusters.

Figure 2b shows the inconsistency rate for different vulner-
ability types. There are 13 vulnerability types in all the entries,
considering some entries with no type. We calculate the type-
specific inconsistency rate by dividing clusters with that type
inconsistency by all clusters of that type in question.

Result and Implications. The result in Figure 2a indicates that
the Privileges Required (PR) metric is the most error-prone
metric (38.64%) in the literally matched clusters, followed
by the impact metric I (29.55%). In contrast, analysts rarely
generate inconsistent CVSS scores based on the Scope (S)
metric. The impact metrics (C, A) and the attack vector metric
(AC) share similar rates (∼23%-25%). The result in Figure 2b
shows that the minimal occurrence of inconsistency cases is
in the vulnerability type “Memory Corruption” (Mem Cor)
(13.2%), while “CSRF” has the highest inconsistent scores
(60%). We also observe that the majority of the vulnerability
types contain around ∼20% of inconsistencies.
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Fig. 3: Inconsistencies in different CVSS metrics and vulner-
ability types (semantic)

Inconsistency in the Semantic Match. Figure 3a shows the
inconsistent metrics within the semantically matched clusters.
We have obtained the original clusters by applying the cluster-
ing method with the vulnerability type. Based on the original
clusters, we extract the essential entities from the vulnerability
description of the CVE ID within the same cluster. Similar



Year 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
#Inconsistent CVE
(Percentage among
CVSSv3-assigned CVEs)

99
(8.49%)

186
(7.12%)

1068
(11.80%)

1659
(11.34%)

1717
(10.94%)

1649
(10.66%)

1418
(7.69%)

1623
(7.78%)

2896
(13.23%)

469
(17.87%)

TABLE V: Number of descriptive inconsistencies per year in the NVD database (between January 2014 – March 2023)

to the literally matched clusters, we calculate the number of
inconsistency clusters caused by eight CVSS v3 metrics. We
also calculate the inconsistency rate per-type as in the literally
matched clusters.
Result and Implications. The results in Figure 3a share
a similar trend to that obtained through literally matched
clusters. The inconsistent CVSS v3 scores are most affected by
the Privileges Required (PR) metric in vulnerability descrip-
tions (49.5%). This rate is much higher than the ones in the
literal clusters. The inconsistency rate is relatively low in the
Attack Complexity (AC) and Scope (S) metrics. The results in
Figure 3b show that there are more clusters with inconsistent
CVSS V3 scores under the vulnerability types “CSRF”, and
“SQL Injection” (over 20%), and the rate of the “Http response
splitting” type is only 4%.
Inconsistencies over Years. In addition, we selected CVE
entries from the past decade to analyze the number of inconsis-
tent entries per year. In the past decade, there have been a total
of 122,481 CVE entities, including 12,784 inconsistent entries.
Then, we count the number of descriptive inconsistencies per
year from January 2014 to March 2023 in the NVD database
and calculate their ratio to the total number of CVE entries
per year. We observe that the inconsistency ratio is stable over
the years, around ∼8% to 12% in Table V. It also shows that
the proportion of descriptive inconsistencies has increased in
2022 (13.23%) and exceeded 15% in 2023 (as 2023 is still
partial as of this writing).
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Fig. 4: CVSS score deviation in literal matched clusters and
semantic clusters

The Score Deviation in the Inconsistency Clusters. Figure 4
shows the score deviation of both literal and semantic clusters.
We first calculate the average CVSS score for each inconsistent
cluster, then measure the distance between individual scores
and this calculated average. The histogram of the deviation of
the CVSS score in inconsistency clusters provides insight into
the extent of variation that severity assessments can become
within seemingly similar vulnerability groups.
Result and Implications. In Figure 4a we observe that in the
literal matched clusters, the CVSS score demonstrates a more

pronounced positive deviation from the average value. This
indicates that inconsistencies in the literal clusters frequently
result in higher ratings. This pattern, however, is not observed
within the semantic matched clusters. In Figure 4b, a more
significant cluster of entries is noticeable around the -2 and
+2 marks, reflecting a substantial degree of deviation. This
observation suggests that semantic matched groups might
contain a broader range of distinctly rated values, signifying
a higher degree of variability in severity assessments.

V. CASE STUDY AND DISCUSSION

In this section, we conduct a case study to demonstrate
the real-world impact of our inconsistency measurements. We
present two groups, one selected from the semantic match
clusters and the other one from the literal match clusters. The
first group contains five unique CVE entries with semantically
similar descriptions, and the first two CVE entries (CVE-2020-
3406, CVE-2020-3591) have exactly the same description but
different CVSS scores. The second group contains three CVEs
with identical descriptions but assigned different scores with
large discrepancies. CVEs in each cluster pertain to the same
vulnerability type and also have exactly the same essential
entities predicted by the NER model, which further indicates
that their descriptions should be very similar semantically.

According to the information from the captured essential
entities and their corresponding descriptions, we manually
analyze the results to see which of the CVSS vectors are in
error. We also utilize majority voting to derive a relatively
reliable assessment of the metrics.

Observation from the Semantic Group. By applying VIET
to extract the essential entities, we confirm that a few of the
CVE entries are indeed human judgment errors that lead to
inconsistencies appearing in the metrics. The semantic group
in Table VI has five unique CVE IDs, all pertaining to the same
vulnerability type with identical essential entities, but assigned
different scores ranging from 4.3 to 6.4. As each entity could
be mapped to relevant vectors, the authors checked each entity
and description. We observed that “persuading a user to click a
crafted link” means human interaction required, whereas CVE-
2020-3591 and CVE-2020-3590 have designated this vector
as “None”. Moreover, the text “allow the attacker to execute
arbitrary script code in the context of the interface...” also
indicates that the confidentiality of CVE-2020-3591 should
not be assigned “None”.

Observation from the Literal Group. In Table VI, the
second group, termed the literal group, consists of three CVE
descriptions that are identical. All pertain to the vulnerability
type “Execute Code” and share the same essential entities as
extracted by VIET. Notably, despite identical descriptions, the



TABLE VI: The case study of two inconsistent clusters

Group
Property CVE ID Vul.

Type Description CVSS3 Vul. Entities CVSS Metrics Suggestion

Semantic
Group

(Similar
CVE

Descriptions)

CVE-2020-3406 XSS
A vulnerability [...] An attacker could exploit this
vulnerability by persuading a user to click a crafted link. A
successful exploit could allow the attacker to execute
arbitrary script code in the context of the interface or access
sensitive, browser-based information.

5.4

‘allow an
authenticated’, ‘remote
attacker’, ‘cross-site
scripting’, ‘xss validate
user-supplied input’,
‘persuading a user’,
‘crafted link’, ‘allow
the attacker’, ‘execute
arbitrary script code’

CVSS:3.1/AV:N/AC:L/PR:L/
UI:R/S:C/C:L/I:L/A:N

Manual checking:
UI ⇒ required
C ⇒ not “None”
Majority Voting:
AV: Network
AC: Low
PR: Low
UI: Required
S: Changed
C: Low
I: Low
AV: None

CVE-2020-3591 XSS 4.3 CVSS:3.1/AV:N/AC:L/PR:L
/UI:N/S:U/C:N/I:L/A:N

CVE-2020-3590 XSS
A vulnerability [...]. An attacker could [...] context of the
interface or access sensitive, browser-based information. 6.4 CVSS:3.1/AV:N/AC:L/PR:L

/UI:N/S:C/C:L/I:L/A:N

CVE-2020-3523 XSS
A vulnerability [...]. An attacker could [...] context of the
interface or access sensitive, browser-based information. 5.4 CVSS:3.1/AV:N/AC:L/PR:L

/UI:R/S:C/C:L/I:L/A:N

CVE-2021-1130 XSS
A vulnerability [...]. An attacker could [...] need to have
administrative credentials on the affected device. 4.8 CVSS:3.1/AV:N/AC:L/PR:H

/UI:R/S:C/C:L/I:L/A:N

Literal
Group

(Identical
CVE

Descriptions)

CVE-2017-5808 Execute
Code

A Remote Arbitrary Code Execution vulnerability in HPE
Data Protector version prior to 8.17 and 9.09 was found.

7.5

‘Remote Arbitrary Code
Execution’

CVSS:3.0/AV:N/AC:L/PR:N
/UI:N/S:U/C:N/I:N/A:H

Manual checking:
AV ⇒ not “Local”
Majority Voting:
AV: Network AC: Low
PR: None UI: None
S: Unchanged C: High
I: None A: High

CVE-2017-5809 Execute
Code 5.5 CVSS:3.0/AV:L/AC:L/PR:L

/UI:N/S:U/C:H/I:N/A:N

CVE-2017-5807 Execute
Code 9.8 CVSS:3.0/AV:N/AC:L/PR:N

/UI:N/S:U/C:H/I:H/A:H

associated scores vary considerably, spanning three severity
levels: medium, high, and critical. The sole discernible metric
is “Remote,” correlating to the attack vector (AV). An incon-
sistency was identified in CVE-2017-5809, where the metric
“Local” contradicts the textual information. For other metrics,
namely privilege (PR), confidentiality (C), integrity (I), and
availability (A), it is unclear how to populate the values due
to missing information in the descriptions.

Potential Root Cause of Description Inconsistencies. We in-
vestigated the root cause of the discrepancies between the three
CVE entries mentioned above and in our motivating example.
According to the vulnerability write-ups referred in the CVE
entries, we found that the first one is indeed related to an unau-
thenticated remote code execution vulnerability with SYSTEM
privileges (Windows), which is indeed a critical security flaw
and accurately ranked as AV:N/C:H/I:H/A:H. However, the
nature of remaining vulnerabilities is different: the second one
enables an unauthenticated remote attacker to cause a denial
of service (correctly ranked as AV:N/C:N/I:N/A:H), leading
to a high severity; the last one is a local privilege escalation
vulnerability (again, correctly ranked as AV:L/C:H/I:N/A:N),
leading to a medium severity. In summary, the CVSS metrics
agree with the true nature of the vulnerability but not with
the descriptions. We speculate that the three vulnerabilities
were processed together (given the consecutive IDs) and the
description of the first one was copy-pasted to the other CVE
entries by an analyst without anyone noticing.

VI. RELATED WORK

In this section, we briefly discuss several prior works that
are close to our work or share similar methodologies.

A large body of research has explored to extract various
features from the rich vulnerability information of NVD/CVE
repositories to predict severity level, impact, and other con-
sequences of vulnerabilities [7], [9], [23], [24], [25], [26],
[27], [28], [29], [30], among which the use of the free-form
description text has been prevalent.

NLP-based Scoring/Ranking using Descriptions. The sever-
ity level of vulnerabilities can help determine which system
needs to be patched first (given limited resources), direct
investments, serve as an evaluation factor, etc. Therefore,
using NLP (as opposed to the context-less traditional static
analysis) to classify vulnerabilities based on severity, or derive
a severity score, has become an established research direction.
For instance, Han et al. [23] and Sharma et al. [25] use word
embedding and CNN to automatically capture discriminative
words and sentence features of vulnerability descriptions, to
predict the severity level of a vulnerability. A similar work
done by Costa et al. [29] uses DistilBERT to process the
descriptions. In addition to descriptions alone, Ni et al. [31]
combine BERT’s specific task layer with CNN to predict the
severity of vulnerabilities by fine-tuning BERT to handle vul-
nerability descriptions and other information, including access
permissions obtained, attack sources, and required authenti-
cation. Taking a further step forward, Binyamini et al. [22]
derive the causal relationship between vulnerability exploits
and construct potential attack paths from the vulnerability
descriptions using NLP. Zhang et al. [13] propose to extract
essential attack-related entities to facilitate vulnerability score
rating from descriptions with fine-tuned cybersecurity-rich text
embedding. In our work, we identify semantically similar
descriptions for inconsistency comparison using their tool
VIET [13] and clustering methods.

Inconsistency of Vulnerability Databases. Before the NLP-
based severity scoring, there were already the CVSS metrics
as our study aims to examine, which are assigned by human
analysts. Unsurprisingly, there exist inconsistencies of various
aspects of such assigned scores in the vulnerability databases.
Noticing the inconsistencies between multiple vulnerability
databases, Jiang et al. [24] use the vulnerability description
in NVD as training input and conduct majority voting on the
inconsistent scores, thereby simplifying the derivation of vul-
nerability severity and solving the problem of inconsistency.
They also take into account structured machine-readable data,
e.g., version and vendor. Dong et al. [9] focus on the two



widely used databases NIST NVD and MITRE CVE and
detect the severity score inconsistencies on a massive scale.
Anwar et al. [10] focus on NVD and uncover inconsistency er-
rors within one entry, e.g., vulnerability publication dates and
applications affected by the vulnerability. Our work focuses
on the inconsistencies within semantically similar vulnerability
descriptions; we observe that different CVE entries can contain
the same description (or semantically similar descriptions),
and after being evaluated by human analysts, got assigned
inconsistent CVSS scores. This indicates, logically, there must
be one or multiple entries assigned inaccurate severity scores,
or it might be incorrect descriptions which should not have
been the same/similar.

VII. CONCLUSION

Inconsistencies in vulnerability databases have recently been
identified one after another, and we advanced this area further
to consider a type of inconsistency where vulnerabilities with
similar descriptions in a cybersecurity sense or even exactly
the same description received different severity scores. We
proposed an approach that can detect such inconsistencies on
a large scale by adapting several methods/tools. Our analysis
revealed around ten percent of the current vulnerabilities
in the NVD potentially have this issue. We also discussed
various implications of such inconsistency issues and believe
that future research will be able to address each of such
implications, e.g., erroneous data of the vulnerability database
and inconsistent scoring.
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