
1556-6013 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2019.2895963, IEEE
Transactions on Information Forensics and Security

Large-Scale Empirical Study of Important Features
Indicative of Discovered Vulnerabilities to Assess

Application Security
Mengyuan Zhang, Xavier de Carné de Carnavalet, Lingyu Wang, Member, IEEE, Ahmed Ragab

Abstract—Existing research on vulnerability discovery models
shows that the existence of vulnerabilities inside an application
may be linked to certain features, e.g., size or complexity, of
that application. However, the applicability of such features to
demonstrate the relative security between two applications is
not well studied, which may depend on multiple factors in a
complex way. In this paper, we perform the first large-scale
empirical study of the correlation between various features of
applications and the abundance of vulnerabilities. Unlike existing
work, which typically focuses on one particular application
resulting in limited successes, we focus on the more realistic
issue of assessing the relative security level among different
applications. To the best of our knowledge, this is the most
comprehensive study of 780 real world applications involving
6,498 vulnerabilities. We apply seven feature selection methods to
nine feature subsets selected among 34 collected features, which
are then fed into six types of machine learning models, producing
523 estimations. The predictive power of important features
is evaluated using four different performance measures. Our
study reflects that the complexity of applications is not the only
factor in vulnerability discovery, and that human related factors
contribute to explaining the number of discovered vulnerabilities
in an application.

Index Terms—Software Vulnerability Analysis, Vulnerability
Discovery Model, Software Security, Machine Learning

I. INTRODUCTION

EXISTING research on vulnerability discovery models
(VDMs) shows that vulnerabilities in an application may

be linked to certain features, e.g., size or complexity, of that
application (a more detailed review of related work will be
given in Section VI). Those findings lead to an interesting
question, i.e., can we predict the existence of vulnerabilities
in an application based on its features? However, as shown in
most existing works on VDMs, including those that focus on
predicting vulnerable components inside one application [1],
[2], [3], [4], [5], [6] and those that aim to establish mathemat-
ical models based on the historical vulnerability data of one
application [7], [8], the correlation between vulnerabilities and
the features of an application is usually not straightforward

M. Zhang, X. de Carné de Carnavalet, and L. Wang are with
the Concordia Institute for Information Systems Engineering (CI-
ISE), Concordia University, H3G 1M8, Montreal, QC, Canada. E-mail:
{mengy_zh,x_decarn,wang}@ciise.concordia.ca.

A. Ragab with the Mathematics and Industrial Engineering Department,
École Polytechnique de Montréal, C.P. 6079, Succ. Centre-Ville, H3C 3A7,
Montreal, QC, Canada, and the Department of Industrial Electronics and
Control Engineering, Faculty of Electronic Engineering, Menoufia University,
Menouf, 32952, Egypt. E-mail: ahmed.ragab@polymtl.ca.

The list of extracted features for the 780 GitHub repositories is available
upon request to the first author.

or reliable enough for such a prediction. For instance, the
number of vulnerabilities in an application may not only be
proportional to its size or complexity (as our study will show,
no single feature is likely to have such prediction power). In
other words, the existence of vulnerabilities in one particular
application may depend on multiple factors in a complex way,
which is still largely unknown.

In this paper, unlike existing works that typically focus on
function/file/component level and construct models from one
or a few applications, we focus on the more realistic issue
of predicting the relative likelihood of vulnerabilities among
a large number of applications. To this end, we perform,
to the best of our knowledge, the first large-scale empirical
study using machine learning techniques on the correlation
between the abundance of vulnerabilities in an application
and a rich collection of features. More specifically, our main
contributions are as follows. To the best of our knowledge, this
is the most comprehensive study to date involving 780 real-
world software applications and 6,498 vulnerabilities. We ap-
ply seven feature selection methods on a rich collection of nine
subsets of features that are then fed into six learning models.
The predictive power has been evaluated using four different
performance metrics including a correlation coefficient.

A. Overview
An overview of our study is given below, and is illustrated

in Fig. 1.
• First, we obtain a large-scale dataset of open-source appli-

cations from GitHub, each of which involves at least one
vulnerability listed in NVD [9]. In Section II, we address
various challenges in the data collection, e.g., automati-
cally identifying GitHub repositories, obtaining the accurate
number of vulnerabilities and automating the labeling of
repositories and mapping to products.

• Second, 34 features in total are extracted from the soft-
ware applications. They fall into five different categories:
popularity metrics, developer metrics, software property
metrics, software metrics, and security metrics. To the best
of our knowledge, this is the first effort to combine diverse
features at the software level. Besides the commonly used
features on code complexity and developer activity [10], we
introduce popularity metrics to reflect the potential interest
from attackers, software property metrics to indicate various
intrinsic properties of the software, and security metrics to
illustrate the potential attack surface of the applications.
This is detailed in Section II-E.



1556-6013 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2019.2895963, IEEE
Transactions on Information Forensics and Security

Fig. 1: An overview of the study

• Third, to reduce errors during the prediction process due
to correlated or noisy features, we apply various feature
selection and projection methods to extract nine subsets,
including the original set of 34 features for reference and its
projection using Principal Component Analysis (PCA) [11].

• Fourth, we study three research questions, as detailed in
Section I-B, related to the predictive power based on
the aforementioned features, using both statistical analysis
and learning-based models. In our study, we apply two
statistical analysis methods, namely, Pearson correlation
and Kolmogorov-Smirnov test, to evaluate the discrimina-
tive power of features. Nine feature subsets (seven from
feature selection results, one with the original set and one
extracted from the PCA) are fed into six learning models
to predict the number of vulnerabilities in the software. We
provide detailed descriptions of the study and analysis of
the prediction results in Section IV.

• Finally, we leverage t-SNE [12] to visualize our multi-
dimensional dataset into two dimensions and observe sep-
arable clusters for applications in Section IV-C. We inves-
tigate the criteria behind this segregation and find that the
size of the projects plays an important role in grouping
applications. One of such groups is populated only by very
low numbers of CVEs.

B. Research Questions and Our Main Findings

A common belief is that the complexity of an application is
the main cause of vulnerabilities [3]. However, the reality is
more complex since many other factors may come into play.
For example, in our GitHub dataset, the project opencms-core,1

780,638 lines of code, which has a lower complexity than the
project SiberianCMS,2 1,863,840 lines of code, actually turns
out to have a higher number of vulnerabilities. Upon closer
examination, we find that the project opencms-core was first
released 2,331 days ago and project SiberianCMS was only
released 601 days ago. The latter project contains a lower
number of vulnerabilities, likely due to having a smaller time
window for attackers to exploit. In this case, the complexity
is clearly not the only determining feature. Similarly, we find
through other examples that any type of features, e.g., the

1https://github.com/alkacon/opencms-core
2https://github.com/Xtraball/SiberianCMS

age (the days counted from the release time until now) or the
popularity (the number of stars, watches, and forks), alone is
not likely to yield reliable prediction power. Therefore, we set
up three research questions and summarize our main findings
as follows. We use #CVEs to represent the number of CVEs
in the following sections.

• R1: Is there just one feature that is significantly correlated
with the number of vulnerabilities in different applications?
Our Finding: In the literature, a correlation coefficient of
less than 0.3 corresponds to a weak correlation, 0.3–0.5 to
a medium correlation, and greater than 0.5 means a strong
correlation [3]. If we follow the same interpretation, only
two features fall into medium correlation; the number of
commits from our developer metrics and the application’s
age. The rest of the features are only weakly correlated to
#CVEs. In the later discriminative test, all the features are
rejected in the K-S test with a small p-value.
The conclusion we draw from this research question is that
instead of complexity, human factors share higher correla-
tion with #CVEs. Indeed, the number of commits (from
our developer metrics) and the application’s age (from
software property metrics, although it also indicates the
attack windows for an application) share medium positive
correlation with #CVEs. However, even highly correlated
features follow a different distribution than that of #CVEs.

• R2: Is there a combination of features that is significantly
correlated with the number of vulnerabilities in different
applications?
Our Finding: In our experiments, the subset of features
that are selected based on the embedded methods with the
Decision Tree (DT) and the Boosted Tree (BT) algorithms
have relatively good performance metrics and accuracy, as
detailed in Section IV. The best correlation coefficient based
on the DT feature set is calculated as 0.875, and the best
one based on the BT feature set is calculated as 0.845.
Both feature sets are considered to be strongly correlated
with #CVEs.

• R3: Can machine learning methods be applied to those
features effectively to predict the number of vulnerabilities
in different applications?
Our Finding: The BT regression model yields the best
results with the DT feature subset, and the overall accuracy
is around 77% when the tolerance range is [-5,5], as detailed
in Section IV. This could provide a rough indicator about
the relative abundance of vulnerabilities. In the cascaded
model analysis, we discover that the size of a project could
also indicate the general trend of #CVEs.

The rest of the paper is organized as follows. Section II
describes the data collection and preparation from both GitHub
and NVD. Section III applies the feature selection techniques
on the dataset to generate the pre-selected feature sets as the
input for learning-based prediction models. Section IV ana-
lyzes the software vulnerability prediction models. Section V
discusses our research questions, provides practical use cases
and lists a number of limitations. Section VI reviews related
work, and finally Section VII concludes this paper.

2



1556-6013 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2019.2895963, IEEE
Transactions on Information Forensics and Security

TABLE I: Number of CVEs per year in the NVD database
between January 2008–October 2017)

Year Total 2017 2016 2015 2014 2013 2012
# CVE 67,294 8,784 9,152 7,717 8,247 6,098 5,524

Year 2011 2010 2009 2008
# CVE 4,600 5,072 4,955 7,145

II. DATA COLLECTION AND FEATURE EXTRACTION

In this section, we describe the collection of a dataset of
open source applications that are affected by at least one
vulnerability listed in NVD [9], along with features extracted
from both the source code and metadata provided by GitHub.
Overview. We consider the GitHub open-source platform, as
it allows us to easily locate and retrieve the source code of
possibly many applications. We investigate the last 10 years of
CVE vulnerabilities (from Jan. 2008 to Oct. 2017, inclusive) to
search for applications found on GitHub. In total, we consider
67,294 CVEs. A one-year distribution is given in Table I.
We identify and overcome several challenges that make the
attribution of GitHub repositories to CVEs difficult. Finally,
we build a semi-automated attribution tool that lifts more
than half of the manual verification load. After identifying
these repositories, we download their source code and extract
metadata provided by GitHub to extract meaningful features.

A. Identifying GitHub repositories in CVEs

We consider the NVD database rather than the original
MITRE CVE database since the former includes important
additional information, e.g., the list of affected applications
codified using the Common Platform Enumeration (CPE)
dictionary. Within a CVE entry, several URLs are provided
as references and may relate to, e.g., official statements about
the vulnerability, advisory bulletins, proof-of-concept (PoC) or
working exploits, links to a bug tracking system, or links to a
patched difference. Among these references, we are interested
in GitHub URLs; however, not all such URLs point to the
official application repository that is affected by the CVE. To
identify the correct repository, we could leverage the refer-
ence_type label provided on each URL. However, we found
that unreliable, i.e., an official application repository could
be labeled as VENDOR_ADVISORY, PATCH or UNKNOWN,
without clear rules.

At this stage, we follow a conservative approach in identify-
ing the official repository. Derived from our observations, we
consider as official the first GitHub reference that is labeled
as VENDOR_ADVISORY or PATCH, or which URL points
to a specific commit, issues, or pull. Furthermore, we check
whether the repository still exists and if it is not a fork of
another GitHub repository. Non-existent repositories may have
been a short-lived content related to the CVE, or they may
simply indicate that the application is no longer hosted on
GitHub. We do not consider forks due to the challenges in
identifying whether the given CVE relates only to the fork
or also to the forked application. We also verify that the
given URL is not a simple advisory or a PoC by searching

for keywords in the repository’s name and description.3 In
parallel, we keep track of all GitHub repositories listed as
references to help resolve certain conflicts in the next stage.

Another challenge is the change of repository owners or
application names, making the same repository not uniquely
identifiable across CVEs. Fortunately, GitHub redirects re-
quests for the old URL to the new one. Hence, for each
repository, we update its URL to the latest one, thus removing
such discrepancies.

We found 5,737 CVEs that had a reference to a GitHub
repository (official or not), accounting for 1,175 unique repos-
itories, of which 24 no longer exist. 151 are redirected to
a different repository (either due to a change in ownership
or renaming of the application name), and 64 are identified
as a PoC or other non-official repository according to our
keyword filter. We identified 890 unique repositories as official
applications corresponding to at least one CVE.

B. Challenges in obtaining the accurate number of CVEs per
repository

Simply counting the occurrences of an identified GitHub
repository across CVEs can be an unreliable indicator of
the true #CVEs affecting the repository. In some cases, a
CVE does not include a reference to a GitHub repository
either because of a simple omission (e.g., RubyGems in
CVE-2015-3900) or because the application’s project did not
exist on GitHub prior to a certain date. Moreover, a GitHub
reference may be missing in several CVEs that affect the same
repository, e.g., tomhughes/libdwarf is found only once while
as many as 37 CVEs may be attributable according to affected
products listed in all CVEs. A naive solution to missing
GitHub references is to map each repository to the affected
application listed in the CVEs where they are found, and
count the CVEs where either the URL of the repository or the
affected application is listed. For example, tomhughes/libdwarf
can be mapped to cpe:/a:libdwarf_project:libdwarf as indi-
cated in CVE-2015-8750.

Unfortunately, several discrepancies prevent us from sim-
ply aggregating CVEs for a given affected product: (a)
Despite a codified list of affected products, the same
product may be referred in various ways, e.g., best-
practical/rt can be listed as cpe:/a:bestpractical:rt or
cpe:/a:bestpractical:request_tracker. Multiple duplicate appli-
cations need to be assigned to the same repository. (b) Also,
CVEs with the correct affected product listed may only refer
a GitHub repository that is not the one affected by the
vulnerability (e.g., CVE-2017-13670). Yet, in other CVEs,
the product may be tied to the right repository (e.g., CVE-
2017-9609). This issue could lead us to attribute CVEs or
repositories to the wrong product. (c) Finally, a repository
could be associated with different products. For example, a

3We match the name of the repository with the fol-
lowing regular expressions (given in Python syntax):
([-_]vuln?$|vulnerabilit(y|ies)|advisor(y|ies)|explo
its?|[-_]PoC$) or ^(vulns?|CVE(-?.*)?$|PoC(-?.*)?$)
(case-insensitive), or CVE|PoC|-SQLi|-XSS (case-sensitive);
we also match the description with [Ee]xploits?|
CVE\b|PoCs?\b|POCs\b|SQLi\b|XSS\b|\b[Bb]ug?s\b.

3



1556-6013 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2019.2895963, IEEE
Transactions on Information Forensics and Security

family of products is built onto the same base, e.g., CVE-2017-
0247 affects ASP.NET Core but refers to several Microsoft
products (including ASP.NET Core). Also, the core project
may not always be listed, further confusing attribution, e.g.,
CVE-2017-0028 lists Microsoft Edge as a vulnerable product,
while it impacts ChakraCore, a core part of Edge’s Javascript
engine; at the same time, CVE-2017-8658 properly refers
to ChakraCore as the affected product. Sometimes, both are
referred under the same CVE, e.g., CVE-2017-11792. Fur-
thermore, only better-known products could be referred as
affected when only a depending library is affected, e.g., CVE-
2017-2428 lists various Apple products but the vulnerability
is located in nghttp2. In this case, we should only consider
CVEs for nghttp2 as it corresponds to the repository listed,
which is unaffected by other CVEs related to Apple products.

C. Semi-automation

We build a semi-automated tool that helps to label reposito-
ries and map them to affected products. It is a heuristic-based
scoring system that assists the human expert to perform label-
ing by suggesting the most probable corresponding products
for a given repository, and the rules to automatically attribute
products to repositories and count CVEs when ambiguities are
easily resolved.

1) Scoring system: After scanning all CVEs, we obtain a
list of affected products for each CVE and a graph of related
affected products (i.e., those listed in other CVEs that share
one common affected product). We sort this list based on the
similarity between the GitHub repository’s owner/name and
the affected product’s organization/name. While performing
manual labeling on a chunk of the dataset, we defined the
similarity as a score. We evaluate the similarity between a
repository and all affected products found in CVEs listing
the repository plus their related products. Note that the list
of products may expand quickly when it contains a popular
product that is often found in CVEs related to its smaller parts
or depending library.

For a given product-repository pair, we first compare
the product organization with the repository owner (case-
insensitive). Starting with a zero score, we give 4 points if the
edit distance (Levenshtein distance) between both represents
less than 10% of the longest string. This comparison encom-
passes small variations and can give high confidence that the
organization and owner are the same entity. Else, we give 3
points if the Longest Common Substring (LCS) is longer than
60% of the longest string. This case is necessary when either
the organization or the owner has an extra part appended, e.g,
Matroska-Org vs. matroska.

Finally, if the pair passes neither the edit distance nor the
LCS comparison, we break both strings around dashes, under-
scores and whitespace, and compare each subpart. For each
pair of matching subparts (considering the edit distance and
LCS criteria described above), we increase the score by two
points weighted by the biggest proportion, in terms of subparts,
that a matching subpart represents among both strings. Con-
sidering sitaram_chamarty vs. sitaramc, the matching subparts
are sitaram (one subpart out of two) and sitaramc (one subpart

out of one, which is the biggest proportion), so we increase the
score by 2× 1/1. This step takes into account names that are
related as they share a common part, but are further apart. We
show in Fig. 2 how these two points could be misleading when
the application names are abbreviated in certain cases only.

We reproduce the same schema on the product’s name com-
pared to the repository’s name; however, we strip any dashes,
underscores and digits when comparing the whole names, as
those are mostly noisy characters. Also, we attribute 5 points
instead of 4 if the names agree with a small edit distance,
which gives more importance to matching product/repository
names than a matching organization. Moreover, we give an
extra point if the product and repository names are exactly
the same. This helps to break ties when very similar names
get high scores, e.g., openssl vs. openssh. Finally, if the score
is non-zero, we check whether the organization and product
names are the same (considering the same edit distance and
LCS criteria), e.g., phpbb:phpbb3. We give 2 additional points
in this case since such names tend to match official products,
by contrast to forks that carry a different organization name.
The final score is rounded to the nearest integer. The maximum
score is 12.

Products that get a score higher or equal to 5 are considered
best matches. This threshold takes into consideration products
that either receive 5 points directly thanks to a fully matching
product/repository name, or by a combination of various levels
of matching product vs. repository and owner vs. organization
names, and/or benefit from the 2-point bonus for similar
product and repository names. In any case, if such a product
exists, it is strongly possible that it is the right one. At the same
time, the threshold is low enough to capture products with e.g.,
owner/organization names that match partially (2 points), and
a loosely comparable product/repository (3 points). Setting a
higher threshold may miss some loosely related names, while
setting it lower would encompass more unrelated names and
yield many false positives.

2) Heuristics: Some situations can be resolved automati-
cally. For instance, if a repository is assigned only one product
across all its CVEs and this product is a best match, then we
map the repository with this product and combine the CVEs.
Also, if considering the CVEs attached to all the affected
products does not make a difference from simply counting
the occurrences of the GitHub repository being referred as
the official one, then we stop the product mapping and output
#CVEs. We also ignore repositories that specify the keyword
“mirror” in their description, as such repositories do not live
on GitHub and therefore the popularity metrics we can extract
may be unreliable.

We force manual inspection on any repository that has
fewer than 5 stars, no fork, and consists of 15 files or
fewer. Such metrics indicate an unpopular repository that
might not be an official application repository. For other
repositories, the scoring system helps us to decide quickly
among the best matched products. Among the 890 repos-
itories we considered, 468 were labeled automatically, 21
were discarded as mirrors, 50 were removed due to: being
deprecated (e.g., horde/horde), vulnerability finder or exploit
generator (e.g., rapid7/metasploit-framework), PoC/advisories

4



1556-6013 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2019.2895963, IEEE
Transactions on Information Forensics and Security

not caught by the previous filter (e.g., Ha0Team/crash-of-
sqlite3), non-software, e.g., PDF, papers, documentation, web-
sites (e.g., nonce-disrespect/nonce-disrespect), manually la-
beled mirrors/read-only repositories (e.g., LibreOffice/core), or
empty repositories. Then, 27 repositories were ignored due to
the complexity of properly counting their number of CVE.
This happened when repositories are part of bigger projects,
or a project spans on multiple repositories and CVEs do not
label the specific affected repository, as well as in the case
of forked companies, e.g., ownCloud and nextCloud. Further
work is required to take such cases into account. Finally,
four repositories were discarded since we could not obtain
all metrics. In total, we assigned a more accurate #CVEs and
we further consider 788 repositories.

D. Example

Fig. 2 shows an instance of our tool on a given reposi-
tory. The upper half shows the identified candidate products
by increasing score (“s:”). In the third position, bestpracti-
cal:request_tracker is mentioned directly in 16 CVEs (“#”)
and was attributed a score of 4 (due to matching organiza-
tion/owner names). The star (*) before the name indicates
that this product was seen in at least one CVE along with the
GitHub repository. Below, -this- (1) indicates that the
repository was actually seen exactly once. In second position
with one CVE and a score of 6, the product bestpractical:rt-
extension-mobileui scored higher due to two additional points
attributed for the shared rt part in the product/repository name.
However, this product was never mentioned in any CVE
together with the repository. Having more than 5 points, this
product is pre-selected (“>” before the product) by the tool.
After careful review, we found that this product corresponds
to a mobile version of the main application that is located
in a separate repository. Hence, we discard this product. The
suggestion of this related product by our tool could have been
useful in another situation. Finally, the best score corresponds
to the product bestpartical:rt whose name fully matches the
repository’s name and hence receives 10 points (i.e., 5+4+1).
It is used in 36 CVEs.

The lower half shows information related to the GitHub
repository and the number of CVEs where a URL from this
repository was seen, i.e., only in three CVEs in this case. The
tool pre-selected the position of the products with at least 5
points. The operator changed this choice to those in positions 1
and 3. The tool merged the CVEs that belong to both selected
products (16 and 36 CVEs) plus those in which the URL was
found (3 CVEs, of which one appears with the 3rd product
and two with the 1st product), giving a total of 52 CVEs. In
this case, there was no overlap between the CVEs linked to
both products; however, our tool would properly account for it
if any. This number could not be obtained by counting either
only the number of CVEs in which the repository’s URL is
found, or by mapping only one product name to the repository.

E. Feature Extraction

We clone the 788 GitHub repositories that are shortlisted.
We also proceed to retrieve certain metadata from GitHub

3: *cpe:/a:bestpractical:request_tracker (#16,s:4)
-this- (1)
2: > cpe:/a:bestpractical:rt-extension-mobileui (#1,s:6)
-
1: >*cpe:/a:bestpractical:rt (#36,s:10)
-this- (2)

https://github.com/bestpractical/rt
CVEs: 3
Request Tracker, an enterprise-grade issue tracking system
[1,2]? 1,3
Merged CVEs: 52

Fig. 2: Output of our semi-automated tool asking the operator
to choose which product corresponds to the GitHub repository
bestpractical/rt

TABLE II: The overview of GitHub applications features

Metrics Features Variables

Popularity
Number of stars #stars
Number of watches #watches
Number of forks #forks

Developer Number of contributors #contributors
Number of commits #commits

Software Property
Age age
Number of labels #labels
Language distribution %+language, e.g., %Java

Software

Size size
Number of files #files
Number of program files #program-files
Number of blank lines #blank
Number of comment lines #comment
Number of code lines #code
Number of lines of C/C++ c-sloc

Security
Number of issues #issues
Number of functions #functions
Flawfinder risk levels hits, L1–L5

either through the provided APIs or by parsing relevant el-
ements from web pages of the repository. We detail below the
categories of features that we extracted from GitHub and from
the cloned source codes. Table II shows an overview of our
extracted features. Note that eight repositories systematically
crashed the tools we used to extract certain features. In the
end we only collected features for 780 repositories.

1) Popularity Metrics: The popularity metrics translate the
incentives attackers or defenders may have to find vulnera-
bilities in a given project; the higher the popularity, the more
attention to the project. In this study, the popularity metrics are
queried from GitHub’s API, i.e., fork, star, and watch. #forks
reveals the popularity of a repository among active developers.
Developers/contributors could work on a forked project, e.g.,
making additions or fixing bugs. Later, they could send a pull
request to the original owner to include their modifications into
the original code base. #stars and #watches on the project
show the attention of a repository among interested GitHub
users. Starring a project is similar to bookmarking as it allows
users to quickly reach back to the repositories. Watching a
project enables users to receive notifications about the project.

2) Developer Metrics: We collect #commits during a
project’s existence on GitHub, as well as #contributors. #com-
mits represents the number of changes/patches that have been
made, and could also represent the overall development speed
or trend (i.e., bigger vs. smaller changes committed at a
time) over the lifespan of the project. This number is not
directly available through the GitHub API; rather, one should

5



1556-6013 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2019.2895963, IEEE
Transactions on Information Forensics and Security

query the metadata of all commits and count them, generating
several hundreds or thousands of queries. Instead, we query
the GitHub repository web page and parse #commits shown.

#contributors may relate to the size of a project in terms
of manpower. It could also highlight open-source projects
that accept various inputs from other developers, which could
translate into varying levels of scrutiny on each contribution.
We obtain this number through the GitHub API.

3) Software Property Metrics: We consider the creation
date of a repository, which we translate to an age in days
relative to the day we collected other time-dependent features
in November 2017. Arguably, the age of a project is expected
to make a difference in #CVEs that have been discovered, as
it reflects the exposure period of the application, i.e., the time
anyone has to see the source code, study the application, and
discover vulnerabilities.

We also consider the relative percentage of each program-
ming language in a repository, calculated based on the summed
file sizes corresponding to each language. This distribution is
useful considering the diversity of applications within scope
as it puts the number of lines of code into perspective. Indeed,
ten lines of Python arguably carry a different amount of
information than ten lines of C, due to Python being a higher-
level language. Up to 162 languages are reported by the API
in our study; however, we only consider the 12 most common
ones encountered in the repositories: C, C++, C#, Go, HTML,
Java, JavaScript, Perl, PHP, Python, Ruby, and Shell, to limit
the dimension of the features.

Finally, we consider the topics assigned to the repository by
the owner. Topics are labels that usually reflect the purpose,
subject area, functionalities, community and language of the
repository. Examples include “cloud”, “design”, “ecommerce”,
“framework”, “packet-capture”, “exploitation”, “windows”,
“forum”, “php.” Due to the wide variety of topics and the
lack of a proper hierarchical structure to group related topics,
we limit our use of topics in this study to their number. A
repository that is labeled with several topics may serve multi-
ple purposes and touch several areas, giving some indications
about its source code. We refer to this feature as #labels.

4) Software Metrics: The software metrics we collected
from the source code cover four levels of granularity: overall
program size, #files, number of program files (#program-files),
and the source lines of code (#code, an estimation for the
cyclomatic complexity [13]).

To measure a project’s size, one option is to rely on
the GitHub API, which provides a size parameter for each
repository. However, the reported size reflects the server-
side storage requirement for all revisions with certain storage
optimization. Thus, we resort to cloning all projects locally
and measure only the size of the HEAD tree, i.e., the view of
the latest revision’s files tree. All projects occupy a total of
106GiB on disk, while the API reported only 73.5GiB. The
total size representing all latest revisions is 31GiB. The size
on disk seems to represent the one reported by the API plus
the space taken by the current view of the tree.

#files is obtained by git ls-files, which lists files under
the current repository exhaustively. We use cloc [14] to re-
port #code, #blank and #comment in multiple programming

languages. In total, the time effort spent on gathering those
features from the 780 code repositories is 1.5 days. In ad-
dition, we also ran Flawfinder [15] to gather C/C++ specific
information, in particular the number of lines of C/C++ code,
referred as c-sloc.

5) Security Metrics: Security metrics that we choose in this
study represent two security perspectives: the potential attack
likelihood, and the existing attack likelihood. We use the num-
ber of flaws that could be identified by Flawfinder, a widely
used source code auditing tool [6], [15], as the potential attack
likelihood for an application. Flawfinder identifies potential
flaws inside C/C++ source code and outputs the total number
of flaws along with a breakdown according to five severity
levels, e.g, L1 corresponds to the number of flaws with a level
1 severity (the lowest).

To quantify the potential threats in an application, we
leverage the attack surface [16], which is defined as the
sum of entry/exit points (i.e., the functions directly/indirectly
invoking I/O functions). However, to obtain the attack surface,
we would need to construct call graphs for all applications,
which is not necessary trivial to establish. Therefore, we
consider the number of functions, which is the upper bound of
the attack surface metric, as the approximation of the attack
surface metric to indicate the potential attack likelihood. The
summation of the functions was indexed by C-tag.4

The number of issues on a project reflects software bugs
reported by users and also list tasks for project maintainers.
Certain issues are related to security, e.g., issue #6599 in
openssl, a bug related to accepting invalid certificate versions,5

which could lead to security vulnerabilities. In this study, the
number of issues on a project is considered as an indicator of
the existing attack likelihood.

III. FEATURE SELECTION

In this section, we apply machine learning techniques on our
feature set to remove noisy and correlated features to the target
variable, #CVEs. All the experiments are built with MATLAB.
We uniformize the terms used in the latter sections. We refer
to the target variable in regression models as response and the
features in regression models are referred as predictors. The
data entries are referred to as observations in all the models.
Table III summarizes the feature selection results.

A. Feature Selection

A commonly known effect in machine learning, curse of
dimensionality, points out that an increasing feature space
dimensionality weakens the reliability of trained analysis
systems [17] by overfitting the data. An efficient solution
is to apply feature selection to find feature subsets, with
lower-dimensional space, which leads to more reliable learning
results. Feature selection is also known to enhance the pre-
diction performance, lower the computational costs, simplify
the models and provides better understanding in the learning
problems [18]. We use three types of feature selection meth-
ods: filter methods, wrapper methods, and embedded methods.

4http://bxr.su/FreeBSD/usr.bin/ctags/
5https://github.com/openssl/openssl/issues/6599

6



1556-6013 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2019.2895963, IEEE
Transactions on Information Forensics and Security

CFS

#s
ta

rs

#w
at

ch
es

#f
or

ks

#is
su

es

#c
on

tri
bu

to
rs

#c
om

m
its ag

e

#la
be

ls

%
Ja

va

%
Ja

va
Scr

ipt

%
PHP

%
C

%
C++

%
Pyth

on
%

Go

%
Rub

y

%
Per

l

%
HTM

L
%

C#

%
She

ll
siz

e
#f

ile
s

#f
un

cti
on

s

#p
ro

gr
am

-fi
les
bla

nk

co
m

m
en

t
co

de hit
s

c-
slo

c L1 L2 L3 L4 L5
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

M
in

im
um

 c
or

re
la

tio
n

(a)

MI

#s
ta

rs

#w
at

ch
es

#f
or

ks

#is
su

es

#c
on

tri
bu

to
rs

#c
om

m
its ag

e

#la
be

ls

%
Ja

va

%
Ja

va
Scr

ipt

%
PHP

%
C

%
C++

%
Pyth

on
%

Go

%
Rub

y

%
Per

l

%
HTM

L
%

C#

%
She

ll
siz

e
#f

ile
s

#f
un

cti
on

s

#p
ro

gr
am

-fi
les
bla

nk

co
m

m
en

t
co

de hit
s

c-
slo

c L1 L2 L3 L4 L5
0

0.05

0.1

0.15

0.2

0.25

F
ea

tu
re

s 
im

po
rt

an
ce

 w
ei

gh
t

(b)

RELIEFF (k=15)

#s
ta

rs

#w
at

ch
es

#f
or

ks

#is
su

es

#c
on

tri
bu

to
rs

#c
om

m
its ag

e

#la
be

ls

%
Ja

va

%
Ja

va
Scr

ipt

%
PHP

%
C

%
C++

%
Pyth

on
%

Go

%
Rub

y

%
Per

l

%
HTM

L
%

C#

%
She

ll
siz

e
#f

ile
s

#f
un

cti
on

s

#p
ro

gr
am

-fi
les
bla

nk

co
m

m
en

t
co

de hit
s

c-
slo

c L1 L2 L3 L4 L5
-0.02

0

0.02

0.04

0.06

0.08

0.1

F
ea

tu
re

s 
im

po
rt

an
ce

 w
ei

gh
t

(c)
Decision Tree (regression)

#s
ta

rs

#w
at

ch
es

#f
or

ks

#is
su

es

#c
on

tri
bu

to
rs

#c
om

m
its ag

e

#la
be

ls

%
Ja

va

%
Ja

va
Scr

ipt

%
PHP

%
C

%
C++

%
Pyth

on
%

Go

%
Rub

y

%
Per

l

%
HTM

L
%

C#

%
She

ll
siz

e
#f

ile
s

#f
un

cti
on

s

#p
ro

gr
am

-fi
les

bla
nk

co
m

m
en

t
co

de hit
s

c-
slo

c L1 L2 L3 L4 L5
0

1

2

3

4

5

6

F
ea

tu
re

s 
im

po
rt

an
ce

 w
ei

gh
t

(d)

Boosted Trees (200 trees)

#s
ta

rs

#w
at

ch
es

#f
or

ks

#is
su

es

#c
on

tri
bu

to
rs

#c
om

m
its ag

e

#la
be

ls

%
Ja

va

%
Ja

va
Scr

ipt

%
PHP

%
C

%
C++

%
Pyth

on
%

Go

%
Rub

y

%
Per

l

%
HTM

L
%

C#

%
She

ll
siz

e
#f

ile
s

#f
un

cti
on

s

#p
ro

gr
am

-fi
les

bla
nk

co
m

m
en

t
co

de hit
s

c-
slo

c L1 L2 L3 L4 L5
0

0.5

1

1.5

2

2.5

3

3.5

4

F
ea

tu
re

s 
im

po
rt

an
ce

 w
ei

gh
t

(e)

Random Forest (1000 trees)

#s
ta

rs

#w
at

ch
es

#f
or

ks

#is
su

es

#c
on

tri
bu

to
rs

#c
om

m
its ag

e

#la
be

ls

%
Ja

va

%
Ja

va
Scr

ipt

%
PHP

%
C

%
C++

%
Pyth

on
%

Go

%
Rub

y

%
Per

l

%
HTM

L
%

C#

%
She

ll
siz

e
#f

ile
s

#f
un

cti
on

s

#p
ro

gr
am

-fi
les

bla
nk

co
m

m
en

t
co

de hit
s

c-
slo

c L1 L2 L3 L4 L5
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

O
ut

-o
f-

B
ag

 p
er

m
ut

ed
 p

re
di

ct
or

 im
po

rt
an

ce

(f)

Fig. 3: Importance of our features according to six feature selection methods

TABLE III: Feature selection with different algorithms

Methods
Filter Wrap. Embedded

Variables Correlation CFS MI ReliefF SFS DT BT RF

Po
pu

la
r. #stars 0.0816 3 3

#watches 0.1420 3 3 3
#forks 0.1425 3 3 3 3 3 3

D
e v

. #contributors 0.1307 3 3 3 3 3 3
#commits 0.4360 3 3 3 3 3

So
ft

w
ar

e
Pr

op
er

ty

age 0.3363 3 3 3 3 3
#labels -0.0054
%Java -0.0358 3

%JavaScript -0.0202
%PHP 0.0499 3 3

%C 0.0553 3 3
%C++ 0.0319 3

%Python -0.0479 3
%Go -0.0204

%Ruby -0.0421
%Perl -0.0047 3

%HTML 0.0072 3
%C# -0.0119

%Shell -0.0279 3

So
ft

w
ar

e

size 0.1266 3 3 3
#files 0.2600 3 3 3 3

#program-files 0.1620 3 3 3 3
#blank 0.1956 3 3 3 3

#comment 0.1694 3 3 3 3 3
#code 0.2036 3 3 3 3
c-sloc 0.1966 3 3 3

Se
cu

ri
ty

#issues 0.0805 3 3 3
#functions 0.2658 3 3 3 3

hits 0.1246 3 3
L1 0.1209 3 3
L2 0.1532 3 3 3 3
L3 0.1001 3 3
L4 0.0521 3 3
L5 0.1005 3 3

In total, we used seven feature selection methods to obtain
good feature subset candidates. Additionally, we combine 34
dimensions by using PCA to obtain the eighth feature subset.

1) Filter Methods: The filter methods evaluate the score of
each feature according to certain criteria. The experts then
choose the subsets based on the scores. We consider the
correlation-based feature selection (CFS [19]), and the mutual

information (MI [20]) methods. However, filter methods only
consider the relationship between the pairs of features; the
relationships between multiple features are ignored.

We choose CFS, MI and ReliefF [21], as these algorithms
are widely used in the literature.

a) Correlation based Feature Selection: CFS calculates
the correlations between any pair of features, and uses the
lowest correlation in one feature as the weight of this feature.
The CFS method selects the features that highly correlate with
the response and do not correlate with other features. Fig. 3a
presents the feature selection scores from CFS. In this study,
we first set 0.01 as the threshold for the CFS method, i.e.,
weights lower than 0.01 are filtered in this step. Then, only the
features with high correlations with #CVEs (see the correlation
column in Table IV) stay in the final feature set. In this sense,
we obtain a feature set with high correlation to #CVEs and
low correlation with any other features.

b) Mutual Information: The MI measures the mutual
dependencies between the response and the predictors. As
with the correlation, the MI algorithm only produces pairwise
results. In contrast to the correlation, the MI algorithm captures
the nonlinear dependency through the joint probabilities. In
this study, we output the MI score as the importance weight
for features. Fig. 3b shows the importance of the features as
defined by their MI score. We set the threshold to select the
feature subset to 0.15.

c) ReliefF: The ReliefF algorithm calculates the Eu-
clidean distance from each predictor to the response. k is the
number of closest predictors that are taken into consideration
for the majority vote. We applied different values of k to
generate the importance weights for the features, e.g., k = 1,
3, 5, 7, 15. Fig. 3c shows the feature selection results from
k = 15, and in this study, we select the features from the
k = 15, with a threshold of 0.02.

7



1556-6013 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2019.2895963, IEEE
Transactions on Information Forensics and Security

2) Wrapper Methods: The wrapper methods involve learn-
ing algorithms to evaluate the relevance of the feature sets.
Ideally, wrapper methods test all the possible permutations for
the feature subsets and output the ones with the best results
in terms of accuracy. The corresponding computation time
grows exponentially with the number of features. Heuristic
algorithms, such as the sequential forward selection (SFS),
are proposed to tackle this search problem. SFS starts from
an empty set and adds features one by one to obtain the
best feature set. We apply the SFS and the sequential forward
floating selection (SFFS). We only report the result from SFS
since both yield the same results.

3) Embedded Methods: The embedded methods build the
learning algorithms inside the feature selection process, e.g.,
decision trees [22], random forests [23]. The selected feature
set is generated automatically after the learning process.

We implemented three embedded methods: binary regres-
sion decision tree (DT), boosted regression trees using least
squares boosting (BT), and Random Forest (RF). Fig. 3d
demonstrates the importance weight for each feature from
the DT method. We choose 0.05 as our threshold; another
threshold value might be chosen base on expert knowledge.

The number of trees is the common parameter in both
the BT and RF method; we choose 200, 500, and 1000
trees for both methods. During our experiment, changing the
parameter’s value only bring negligible differences in the
feature importance weights. We only show the results from
the BT method with 200 trees in Fig. 3e, and the RF method
with 1000 trees in Fig. 3f. Based on expert knowledge, we
choose threshold as 0.018 and 0.1, respectively.

IV. ANALYSIS

In this section, we first apply two statistical methods to
evaluate the correlations between the features and #CVEs in
Section IV-A. Then, the prediction powers of learning-based
models are analyzed in Section IV-B. Finally, we conduct
cascaded model analysis to further study the relationships
between features and #CVEs in Section IV-C.

A. Statistical Analysis

We apply two statistical methods to evaluate the correlations
between our features and #CVEs. First, we normalize the
feature sets with Equation 1 (Min-Max standardization) to
transfer the values of features to a bounded range.

zi =
xi −min(x)

max(x)−min(x)
(1)

where x = (x1, . . . , xn) are the original features in the dataset
and zi is the ith normalized data. Equation 1 maps the values
of all features into the same range [0, 1].

The first statistical analysis is the Pearson coefficient, which
illustrates the linear relationships between the response and
predictors, e.g., in our case, the #CVEs and features. The
correlation coefficient takes values between -1 to 1, which
corresponds to a perfect direct decreasing (negative) or in-
creasing (positive) linear relationship, respectively. The value
0 means that the two input variables are not correlated.

TABLE IV: Results of the statistical analysis for GitHub
dataset based on Spearman’s rank correlation coefficient and
K-S test (significant with p-value ≤ 0.00029)

Variable Correlation p-value K-S test

Popularity
Metrics

#stars 0.0816 9.116E-67 Reject
#watches 0.1420 1.725E-71 Reject

#forks 0.1425 5.385E-66 Reject
Developer

Metrics
#contributors 0.1307 1.027E-68 Reject

#commits 0.4360 1.676E-69 Reject

Software Property
Metrics

age 0.3363 1.428E-302 Reject
#labels -0.0054 2.526E-40 Reject
%Java -0.0358 6.851E-72 Reject

%JavaScript -0.0202 1.004E-19 Reject
%PHP 0.0499 8.033E-25 Reject

%C 0.0553 6.826E-24 Reject
%C++ 0.0319 4.305E-37 Reject

%Python -0.0479 1.446E-31 Reject
%Go -0.0204 1.314E-96 Reject

%Ruby -0.0421 3.316E-62 Reject
%Perl -0.0047 1.043E-63 Reject

%HTML 0.0072 3.822E-20 Reject
%C# -0.0119 1.314E-96 Reject

%Shell -0.0279 5.564E-23 Reject

Software
Metrics

size 0.1266 1.676E-69 Reject
#files 0.2600 1.676E-69 Reject

#program-files 0.1620 1.676E-69 Reject
#blank 0.1956 1.676E-69 Reject

#comment 0.1694 4.155E-69 Reject
#code 0.2036 1.676E-69 Reject
c-sloc 0.1966 2.291E-32 Reject

Security
Metrics

#issues 0.0805 3.316E-62 Reject
#functions 0.2658 9.820E-27 Reject

hits 0.1246 2.983E-38 Reject
L1 0.1209 2.218E-37 Reject
L2 0.1532 1.000E-39 Reject
L3 0.1001 8.338E-37 Reject
L4 0.0521 7.738E-51 Reject
L5 0.1005 3.555E-51 Reject

The second method is the two-sample Kolmogorov-Smirnov
test (K-S test),6 which returns a decision and p-value, to
demonstrate whether or not the response and the predictor are
from the same continuous distribution. The Bonferroni cor-
rection method is used to deal with the multiple comparisons
problem [24]. Therefore, in this paper, the significance level is
corrected to 0.00029 = 0.01

34 (corresponding to a non-corrected
p ≤ 0.01 for each test).

The top three correlated features to #CVEs are #commits,
age, and #functions corresponding to the developer metric,
software property metric and security metric. We discover that
32/34 features are weakly correlated to #CVEs. Only #commits
and age fall in a medium correlation range (i.e., a correlation
between 0.3 and 0.5). After carrying out the K-S test, all
features are rejected due to the low p-value, which means that
no feature follows same distribution as #CVEs.

In conclusion for R1, #commits is the feature that has
the highest correlation to #CVEs; however, it is still under a
medium correlation and not a strong one. Overall, software
property metrics have the lowest correlation, e.g, most of
the language distributions share weak negative correlation
with #CVEs. Also, features in software metrics correlate with
#CVEs around similar value, all of them show weak positive
correlation. Security metrics and popularity metrics also show

6This test calculates the distance between the distribution of two samples;
the null hypothesis is that the two samples are from the same distribution

8



1556-6013 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2019.2895963, IEEE
Transactions on Information Forensics and Security

weak correlations. However, all the features are under different
distribution with #CVEs.

B. Single-model Learning-based Analysis

1) Experiment Models and Evaluation Methods: Unlike
some existing works, which focus on vulnerability discovery
at the file level within an application and with a binary output
(i.e., vulnerable or not), this study leverages regression models
with which responses are numeric values that correspond to
#CVEs per application. We conducted this experiment using
six regression models with various parameters on different
sets of features, totaling 523 prediction results. We refer as
feature-selection-method set the feature subset generated from
the feature-selection-method, e.g., DT set.
Data Preparation. 240 out of 780 projects contain at least
50% of C/C++, and up to 302 contain any proportion of C/C++
in our dataset. As Flawfinder only supports C/C++ projects,
we assign the value -1 to all Flawfinder-related features
(expectedly positive integers) for projects with a zero amount
of C/C++ according to the GitHub repository’s metadata [25].
Performance metrics. The performance of a learning model is
evaluated through root mean squared error (RMSE), a widely
used measure of error that emphasizes large errors; mean
absolute error (MAE), which measures the absolute difference
between predicted values and responses; and mean absolute
percentage error (MAPE) that gives a relative measure of
discrepancies and also gives more emphasis on errors for small
#CVEs. Usually, a lower rate of errors corresponds to better
performance of a model for a given feature set. In addition,
correlation is used to compare the trend between responses
and predictors. In Table VI, the best feature sets are chosen
based on the criteria given below.
Boosted Tree. We leveraged boosted regression trees using
least squares boosting, BT and BT-opt. BT-opt is selected
to calculate parameters with the inbuilt algorithms. Table V
demonstrates the evaluation results of RMSE, MAE and
MAPE. The prediction results from BT-opt with all features
has the lowest MAPE; however, the RMSE and MAE are
higher than BT with the DT set. The main reason for this
observation is that evaluation methods are more sensitive to
capturing errors in certain types of data. For example, MAPE
is sensitive to the errors from small values inside one dataset
while RMSE captures the existence of large errors resulting
from the prediction.
Decision Tree for Regression. In the DT model, the MI set
yields the best MAE; however, the BT set has the best RMSE
and MAPE. Therefore, the prediction results from DT with
BT set are presented in Table VI and Fig. 4b. The accuracy
of the predicted results are presented in Fig. 5b.
Linear Regression. In the LR model, the DT set has the
best RMSE. The SFS set has the best MAE and MAPE.
The correlation is calculated as 0.451 and 0.434 from the
predictions, respectively; therefore, we only demonstrate the
best results from DT set in Table VI and show the predicted
results and the accuracy in Fig. 4c and Fig. 5c.
Neural Networks. We apply two Neural Network (NN) mod-
els, function fitting NN (FFNN) and generalized regression NN

(GRNN). To obtain relatively better results from both models,
we choose 36 hidden layers (from 1 to 36) to get the best
RMSE, MAE and MAPE for different feature sets. The BT set
with 4 hidden layers obtains the best RMSE, and the DT set
with 6 hidden layers obtains the best MAE and MAPE in the
FFNN model, which is overall better than the GRNN model.
Since the correlation is 0.533 for the BT set, which is higher
than the correlation from the DT set, 0.406, we only show the
result of the BT set in Table VI and show the predicted results
and the accuracy in Fig. 4d and Fig. 5d.
Random Forest. We consider the RF model with various
number of trees, 10, 100, 200, 500 and 1000. The best result
is obtained from the DT set with 500 trees, and is presented
in Table VI, Fig. 4e and Fig. 5e.
Support Vector Machine Regression. We leverage Support
Vector Machine Regression (SVR) with three different solvers,
i.e., ISDA, L1QP, and SMO solver, and with three kernels, i.e.,
Gaussian, Linear and Polynomial. The best overall predictive
results are generated from the ISDA solver with the Gaussian
kernel with the DT set; see Table VI. However, the SVR model
also yields the lowest MAPE (66.61%) with the L1QP solver
and polynomial kernel using the CFS set. We list the prediction
results of the CFS set corresponding to the accuracy in Fig. 4f
and Fig. 5f.
Cross-validation. Each of the training and prediction experi-
ments has been conducted using ten-fold cross-validation [26].
The same randomized folds are used with the linear, NN, and
RF models (i.e., we perform 10 training-prediction segments
based on the randomly pre-separated folds, and average the
results), while folds for the BT, DT, and SVR models are
selected internally in MATLAB.

For the NN model, a validation set is also used to avoid
overfitting [27]. We randomly split each training set (repre-
senting 90% of our data) into 9 parts and use one as the
validation set, giving 80%, 10%, 10% for training, testing,
and validation, respectively. These proportions are on par with
MATLAB default’s, i.e., 70%, 15%, 15% [27], but match more
closely the proportions of a classic ten-fold cross-validation.

2) Experiment Results Interpretation: The DT set, which
only contains four features from three categories, provides
the best evaluation results for five models. It contains the
most generic features, thus it discards all the application
code specific features. This result indicates that the general
comparison among applications could simply be generated
from developers, popularity and the existing time of the
applications. The BT set, which involves more software and
security metrics, perform similarly to the DT set.

To better understand the prediction results, Fig. 4 sum-
marizes the predicted value from the best models and the
feature sets. Since multiple observations correspond to the
same #CVEs in our dataset, we group the observations based
on #CVEs. X-axes in the graphs represent bins of unique
#CVEs. The red squares in the upper graph plot the real
#CVEs for each unique #CVEs, which are the same as
the labels on the x-axis. The green crosses are the aver-
age predicted #CVEs for each unique #CVEs and the blue
pluses are the predicted #CVEs for each observation. The
predicted results are ordered by the relative percentage error

9



1556-6013 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2019.2895963, IEEE
Transactions on Information Forensics and Security

TABLE V: Results of predictive power for BT and BT-opt regression models

Model Performance All Filter Method Wrapper Method Embedded Method PCAMeasures Features CFS MI RELIEF SFS DT BT RF

BT
RMSE 16.57 17.23 16.57 16.57 31.72 15.83 16.57 31.1 25.77
MAE 6.57 6.99 6.57 6.57 9.07 6.37 6.57 9.87 9.35

MAPE (%) 206.91 218.71 206.91 206.91 263.69 198.18 206.91 291.24 291.51

BT-opt
RMSE 18.4 22.04 20.49 19.15 31.4 19.67 19.68 29.16 28.31
MAE 6.92 7.76 7.61 6.78 9.19 6.96 6.86 8.47 9.81

MAPE (%) 188.99 219.41 209.62 208.08 280.12 211.17 195.17 219.33 347.25


�


���
���

	
��
���

��
��

�
�
�

��
���

�
�

��
��
��
��
��
��
��
��
��
��
���

	�
��
��

�

�

�
�	

	
�

��
��
��
��
��
�	
��
���

�
��
�

��
���

��
��
��
	�



���

�
�
�

�
���
���
���
���
���

��
�
�"

��!!���#��������
�
����
�%�!�����!����#��
�!����#��


�


���
���

	
��
���

��
��

�
�
�

��
���

�
�

��
��
��
��
��
��
��
��
��
��
���

	�
��
��

�

�

�
�	

	
�

��
��
��
��
��
�	
��
���

�
��
�

��
���

��
��
��
	�



���

�
�
�

��� $������"

�
��
���
���
���
���
���
���
���

��
�"
�!
%�
#��

�"

��	� ���� � � 
��� � � � � ��
��� � � � � � 
 � � � �
�	

� � � � � � � � � � � � ���� � � � � � � � � �
��

���

���

(a) BT with the DT set

�

���

�
���

��
	

�

�

��
�
�

��
��

�	
���

�	

�

��
��

��
��

���
���

��
�


	�
��

��
��

��
���

��
��

��



��
��

��
�

	�
��




��

��

	

��
�



�
���

��
��

��
��

���
�

�
�

�
�

���
���
���
���
���

��
�

��

������������������

�

���

�
���

��
	

�

�

��
�
�

��
��

�	
���

�	

�

��
��

��
��

���
���

��
�


	�
��

��
��

��
���

��
��

��



��
��

��
�

	�
��




��

��

	

��
�



�
���

��
��

��
��

���
�

�
�

�

������������

�
��

���
���
���
���
���
���
���

��
��

��
��

���
��

� � � ��
����� � � � � � � � � � � 
 
 � � � � � � � � � � � � ��	� � �

���

� � � � � � � � � � ���� � �
�	����

���

(b) DT with the BT set

��
��

��
��

��
��

�

��

��
�

	�
��

�	



��
��

��
��

�

���

��
��

��
��

��
�

��
	


�
���

���
��




���

��
���


	
���

���
��

	�
�	

��
�
�

��

�

��
���

�


�

��
�

�
�

�
�

��
�

���
���
���
���
���

��
�

��

������������������

��
��

��
��

��
��

�

��

��
�

	�
��

�	



��
��

��
��

�

���

��
��

��
��

��
�

��
	


�
���

���
��




���

��
���


	
���

���
��

	�
�	

��
�
�

��

�

��
���

�


�

��
�

�
�

�
�

��

������������

�
��

���
���
���
���
���
���
���

��
��

��
��

���
��

��
� � � � � � � � � � ��	� � � � � � � � � ��������� � � � � � � � � � � � � � � � � � 
 � � � �

���

����
�	

���




(c) LR with the DT set

��
��
��
��
��


��
��
��
��
��
	


�
��
	�
�
��
�




�

��
�	

�
��

�

�
	�

��
		
�


�
�
�
�
�

��
	�
	�
��
���
���
���
���

��
�
�

��
��
��
�	�

�
�	

�
	


��
��
��

�

�
���
���
���
	��

��

��
!�
��
�
�$

�!##���%�! �����
��

��������$
�'�#�����#����%������$
�#����%������$

��
��
��
��
��


��
��
��
��
��
	


�
��
	�
�
��
�




�

��
�	

�
��

�

�
	�

��
		
�


�
�
�
�
�

��
	�
	�
��
���
���
���
���

��
�
�

��
��
��
�	�

�
�	

�
	


��
��
��

�

� �"&������$�

�

�
���
�
�
���
�
�
���
�
�
	��

��
!�
�!
�$
�#
'�
%�!

 $

���� � � ���� � 
 � ��� � 
 � 	 � � � ��
� ���� � � � � � � � � � � � � � � � � � � � � �

���

�

����� � �

�
�

(d) NN with the BT set

�

�

���
��


�
��

��
�



	
	�

��
�

��
��

��
��

	
�	

��
��

��
��

��
���

���


���

��
�


��
�	

��
��

�
�
���

��
��

���
��


�
��

��
���

�




��
��

��
�


��
	�

���
��

�
�

�
�

�
���
���
���
���
���

��
�

��

���������������
��

�

�

���
��


�
��

��
�



	
	�

��
�

��
��

��
��

	
�	

��
��

��
��

��
���

���


���

��
�


��
�	

��
��

�
�
���

��
��

���
��


�
��

��
���

�




��
��

��
�


��
	�

���
��

�
�

�
�

������������

�
��

���
���
���
���
���
���
���

��
��

��
��

���
��

��� ��
� � � � � � � � � 
 � ���� � � � � � � ��	� � � � � � � � � � � � 
 � � � ���� � � � � � � ���
��

���
�	

���

(e) RF with the DT set

�
�

�
�

	
��



�

�
��

�
��

��
�	

��
��

�	
��

��
��

�

��


�
��

��
��

��
�


��

�

��
��

��
��

��
��

��
��

��
	�

��
��

��
�


���





�
	�


	
���

���
���

���
���

���
���

�
�
�

���
���
���
���
���

��
�

��

�����������������


�
�

�
�

	
��



�

�
��

�
��

��
�	

��
��

�	
��

��
��

�

��


�
��

��
��

��
�


��

�

��
��

��
��

��
��

��
��

��
	�

��
��

��
�


���





�
	�


	
���

���
���

���
���

���
���

�
�

������������

�
��

���
���
���
���
���
���
���

��
��

��
��

���
��

���
�	������
�	�

���


�����
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

(f) SVR with the CFS set

Fig. 4: Prediction results (x-axes in the sub-figures follow ascending order of the relative percentage error between average
predicted #CVEs and real #CVEs)

TABLE VI: The best results of predictive power for 6 learning-
based prediction models

Models
BT DT LR NN RF-500 SVR-

ISDA-
Gaussian

Best Feature Sets
Performance
Measures

DT BT DT BT DT DT

RMSE 15.83 16.88 25.33 24.85 18.71 25.25
MAE 6.37 6.55 11.41 8.73 6.86 6.62
MAPE(%) 198.18 179.28 434.75 285.45 199.27 81.47
Correlation 0.875 0.845 0.451 0.533 0.783 0.117

( |average predicted CVEs−real CVEs|
real CVEs ), for example in Fig. 4a

the observation with CVEs equal to 73 associates with the
smallest relative percentage error and the observations with
#CVEs equal to 1 is the least relative accurate prediction in BT
model with DT set. The correlation value between real #CVEs
and the predicted #CVEs is 0.875 in this experiment. The
higher correlation means that the trend of predicted #CVEs
follows a similar trend with real #CVEs.

Results and Implications for Prediction Results from
Regression Models: According to the predicted results from six
different models, first we can observe that the predictions for
each response vary significantly among models. For example,
the best project (#CVEs = 73) in Fig. 4a is among the ones
predicted with the largest errors in Fig. 4d. The majority of
projects could be predicted to be closer to the original #CVEs

within a certain tolerance range in different models, which is
demonstrated in Fig. 5. In general, some projects with large
#CVEs are well predicted by BT and DT, while the projects
affected by small #CVEs are better predicted by SVR and the
intermediate results are better when using LR, NN and RF.

Compared with the correlation results in Table IV, the
correlation results between the predicted results and #CVEs
from the learning-based models are improved significantly.
This means that the DT and BT sets capture important factors
in the software vulnerability discovery process.

Some projects have never been predicted close to their real
#CVEs in the entire experiment. For instance, the project
the-tcpdump-group/tcpdump is associated with 140 CVEs,
which are never predicted accurately in our experiments. We
observed that out of those 140 vulnerabilities, 132 of them
were published during 2017 in two batches. In the batch
from September 2017, 90 CVEs are disclosed by the same
group of people,7 suggesting that an automated process led
to the numerous discoveries of similar code flaws. These
rare but sudden mass disclosures suddenly and significantly
increase the #CVEs for a project, which are not predicted
by our model. As a result, there is a significant difference
between the predicted #CVEs and the actual #CVEs. The best
predicted value is 7 CVEs or this particular project from all the
models. Without accounting for the mass disclosure in 2017,
the predicted value matches closely the real remaining #CVEs

7https://usn.ubuntu.com/3415-2/

10

https://usn.ubuntu.com/3415-2/


1556-6013 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2019.2895963, IEEE
Transactions on Information Forensics and Security

������� ������� ������� ������� ��	��	�
���������!��������

���
���
���
���
��	
��

���
���
��

�
��

"�
��

$

�������
��� ����
��� ����

��� ����
�#�����

(a) BT with the DT set

������� ������� ������� ������� ��	��	�
���������!��������

���

���

���

���

��	

��


���

���

��

�
��

"�
��

$

�������
��� ����
��� ����

��� ����
�#�����

(b) DT with the BT set

������� ������� ������� ������� ��	��	�
���������!��������

���
���
���
���
��	
��

���
���
��

�
��

"�
��

$

�������
��� ����
��� ����

��� ����
�#�����

(c) LR with the DT set

������� ������� ������� ������� ��	��	�
���������!��������

���

���

���

���

��	

��


���

���

��
�
��

"�
��

$

�������
��� ����
��� ����

��� ����
�#�����

(d) NN with the BT set

������� ������� ������� ������� ��	��	�
���������!��������

���

���

���

���

��	

��


���

���

��

�
��

"�
��

$

�������
��� ����
��� ����

��� ����
�#�����

(e) RF with the DT set

������� ������� ������� ������� ��	��	�
���������!��������

���
���
���
���
��	
��

���
���
��

�
��

"�
��

$

�������
��� ����
��� ����

��� ����
�#�����

(f) SVR with the CFS set

Fig. 5: Accuracy for the predicted #CVEs with various ranges
of tolerance

(i.e., 8). The project ntp-project/ntp is affected by 77 CVEs,
and was also never predicted accurately. Similarly, we found
that an unexpected large number of CVEs was released in
2017, i.e., 59/77. Our regression models could not capture the
unexpected release of vulnerabilities due to human/automation
factors, such as research projects or automated testing.

The relative percentage error is exaggerated among the
small number of observations since a small difference already
generates a large percentage error. For example, the relative
error is 100% when the predicted number is 2 and the
real number is 1. We study the relative range of tolerance
to understand the predictive power in a small number of
responses for different models. The x-axis of Fig. 5 shows
the ranges of tolerance, e.g., [-1,1] means that we accept the
prediction result with an error value of 1. The accuracy is
defined as the percentage of accepted predictions. The lines
on the figures show the change of accuracy with the increase
of tolerance ranges.

Results and Implications for Accuracy: Fig. 5 demonstrates
the predictive power for small #CVEs for each model based
on the previously selected feature set. The red line in each
graph shows the overall accuracy for the entire dataset. Since
the most common value is #CVEs = 1, the overall accuracy
is often close to the accuracy of this entry. Although the

correlations are similar in BT and DT models, the predictions
for small #CVEs are very different. The DT model, which has
a lower MAPE than the BT model, illustrates the predictive
power for small number of CVEs by having a relatively higher
accuracy in #CVEs = 1 and 2. The performance of the LR
and NN models is worse than the BT and DT models in this
case. Fig. 5e shows the advantage of low MAE; the accuracy
increases faster than other models. Fig. 5f shows the SVR
model with SFS set, which has the lowest MAPE, with the
best prediction results for #CVE = 1,2,3.

The BT and DT models provide a relatively better overall
trend prediction, with more accurate predictions for larger
#CVEs. The LR and NN models provide more accurate results
for intermediate #CVEs. The RF model gives the best average
increase in accuracy, thus could be used for the predictions
with certain tolerance range. The SVR model could predict
small values of the #CVEs in a more accurate way. The
overall accuracy for the entire dataset reaches 77% with a
[-5,5] tolerance range.

C. Cascaded Models

In this section, we visualize our all-feature dataset and
identify clusters that correspond to specific #CVEs. Given that
our single-model analysis yields models that perform better in
certain range of #CVEs, we build a cascaded model by first
distinguishing the clusters then applying the previous learning-
based models.

The t-Distributed Stochastic Neighbor Embedding (t-
SNE) [12] technique is used in this work to cluster our
dataset and visualize it in two dimensions. t-SNE represents
the similarities of high-dimensional datapoints as the condi-
tional probabilities that are calculated by several algorithms.
Compared to traditional dimensionality reduction techniques
(e.g., PCA [11], which uses linear techniques), t-SNE per-
forms better in keeping similar datapoints close together with
nonlinear dimensionality reduction techniques, which cannot
be achieved by linear mapping. Compared with other non-
linear dimensionality reduction techniques, such as Sammon
mapping [28], Stochastic Neighbor Embedding (SNE) [29],
t-SNE is capable of capturing both the local and the global
structures of the datasets.

In MATLAB’s t-SNE implementation [30], 11 distance
algorithms can be chosen in the t-SNE function. The Perplexity
parameter controls the effective number of local neighbors at
each point. Fig. 6 is a visualization of the GitHub dataset using
four distance algorithms. To visualize the data, we remove
the response (#CVEs) from the dataset; only predictors are
clustered by t-SNE. The 34 features are mapped into two
dimensions. We then use #CVEs to color the data points.
The blue dots represent applications affected by five or more
#CVEs. The other colors correspond to the labeled #CVEs.
In Fig. 6a, the datasets are visually well divided into five
clusters; two of the clusters contain a majority of repositories
with low #CVEs, and three of them contain a majority with
higher #CVEs.

We applied all the distance algorithms with various per-
plexity values in order to obtain the best visualization results.

11



1556-6013 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2019.2895963, IEEE
Transactions on Information Forensics and Security

-40 -20 0 20 40
-40

-20

0

20

40

1
2
3
4
5+

(a) Perplexity=30, Euclidean distance
-20 -10 0 10 20 30 40

-20

-10

0

10

20

30

1
2
3
4
5+

(b) Perplexity=34, Cosine distance

-40 -20 0 20 40
-40

-20

0

20

40

1
2
3
4
5+

(c) Perplexity=30, Chebychev dist.
-40 -20 0 20 40

-40

-20

0

20

40

Cluster 1

Cluster 2

Cluster 3

1
2
3
4
5+

(d) Perplexity=30, Minkowski dist.

Fig. 6: Visualization of our data using t-SNE projections based
on all features, and selected perplexity and distance algorithms

(a)

2

3 1

size<744411

size<3.73782e+07

   size>=744411

   size>=3.73782e+07

(b)

Fig. 7: Cascaded learning-based model (a), Decision tree to
classify the clusters in Fig. 6d (b)

Fig. 6 shows the most visually separated visualization results
from the GitHub dataset.

We design a new cascaded model (illustrated in Fig. 7a) to
first separate the original dataset into three datasets according
to Fig. 6d, namely cluster 1, 2 and 3. Cluster 1 is the lower left
cluster in Fig. 6d; cluster 2 is the upper cluster; and cluster 3
is the lower right cluster. Then we apply machine learning
classification techniques on the clusters to predict #CVEs
for each project. In our dataset, after applying 10-fold cross
validation, the decision tree classifier in Fig. 7b classify our
dataset into three clusters with 100% accuracy. From the color
of the clusters, we could notice that cluster 2 mainly contains
small #CVEs (average #CVEs = 1.4); cluster 1 is mainly for
higher #CVEs projects (average #CVEs = 24); and cluster 3 is
mixed with both type of projects (average #CVEs = 7). This
observation indicates that the size of a project corresponds
to the #CVEs. Small sized projects always have low #CVEs;
however, some large size projects only contain small #CVEs,
which require other additional features to explain.

We applied all the models to the separated datasets, and
compared the best evaluation methods and correlations. The
best correlation between the predicted and real #CVEs in

������� ������� ������� ������� ��	��	�
���������!��������

���
���
���
���
��	
��

���
���
��

�
��

"�
��

$

�������
��� ����
��� ����

��� ����
�#�����

(a)

������� ������� ������� ������� ��	��	�
���������!��������

���

���

���

���

��	

��


���

���

��

�
��

"�
��

$

�������
��� ����
��� ����

��� ����
�#�����

(b)

Fig. 8: Accuracy for cluster 2 and 3 from the cascaded model

cluster 1 is 0.9118, which indicates a better trend than the
ones achieved in the single-model study. This observation
shows that a large #CVEs dataset have the ability to compare
the relative relationship between two large size applications.
Cluster 2 has a lower MAE than in the single-model study
(i.e., 0.38) using SVR, which demonstrates the ability of this
model to accurately predict small #CVEs. This is consistent
with our finding in the single-model study. The accuracy is
shown in Fig. 8a, which has a 90% overall accuracy with a
[-1,1] tolerance range. Cluster 3, which has mixed #CVEs, has
shown a similar predictive power with the single-model study.
We believe that more features or applying feature selection
may increase predictive power for Cluster 3.

V. DISCUSSION

In this section, we first address the three research questions,
then we provide practical use cases for our proposed models.
Finally, we list a number of limitations identified in this work.

A. Research questions

R1: After the statistical analysis of the dataset, we obtained 
the highest correlation value, 0.436, between #commits and 
#CVEs, which falls into a medium correlation range. The 
age of an application ranks as the second highest correlation 
among all feature sets, which could be translated as an 
increased vulnerability discovery window for attackers/users. 
Those two features are closely related to #CVEs. This could 
indicate that human factors from both developers and attack-
ers/users should be considered as non-negligible factors in 
a vulnerability discovery process. From cascaded model, we 
conclude that the size of a project is also closely related to 
#CVEs. Small projects (<727KiB in our experiment) often 
correlate with a smaller #CVEs and vice versa. Despite the 
correlations, the K-S test shows that none of the normalized 
features are under the same distribution with #CVEs.

R2: The DT and BT sets are always ranked with better 
results. These two feature sets span different metric types. The 
DT set contains #watches from popularity metrics, #contrib-
utors and #commits from developer metrics, and the age of 
applications. Thus, this set mostly considers human-related 
factors and completely ignores the software and security 
metrics. On the other hand, the BT set contains most of the 
software metrics and two other security metrics features. The 
predicted results from these feature sets are strongly correlated 
to #CVEs.

12



1556-6013 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2019.2895963, IEEE
Transactions on Information Forensics and Security

Table VII presents the correlations between the feature
sets. Besides the common features, #watches and #forks are
strongly correlated. Based on the fact that both feature sets
generate the best prediction results, we could guess that
human-related factors play significant roles in the vulnerability
discovery process. However, the software metrics and the se-
curity metrics provide better interpretation of the vulnerability
discovery process for certain applications.

R3: The BT model predicts the best #CVEs with the DT
set, and the overall accuracy is around 77% when the tolerance
range is [-5,5]. The correlation between predicted values and
the responses is 0.875, which demonstrates that the predicted
trend is very similar to that of #CVEs in applications.

B. Use cases
The prediction models are useful in certain contexts where

#CVEs for an application is unavailable or unreliable:
I. Enterprises may develop their own internal tools that are

not known from the outside world and therefore not listed
in any public vulnerability database. They may benefit
from comparing their own application to the number of
discovered vulnerabilities in open-source applications to
accompany a code review. In this case, popularity metrics
may be estimated internally at the company or borrowed
from known counterpart applications.

II. Also, in the case of an invitation to tender, applicants
could be evaluated based on a predicted #CVEs in
their base software. This study would be particularly
relevant in the military sector where such applications
are confidential and thus have no public track record. We
conducted a further experiment to evaluate the predictive
power of such study by removing the popularity features
from our dataset using the BT model. The prediction
results follow the #CVEs with a correlation of 0.86. We
omit the results here to avoid repetitions.
Regarding open- vs. close-source applications, there are
indications that at least the vulnerabilities that affect
both types of applications are similar. Indeed, Schryen
and Kadura [31] conducted an empirical comparison of
published vulnerabilities in open-source and closed-source
software with multiple applications in various categories.
They found that the difference between them is not
significant in terms of mean time between disclosures,
correlation between age and number of vulnerabilities, and
severity levels of said vulnerabilities. Eventually, perhaps
we can infer that the similar features are associated with
vulnerability discovery in both types of applications.

III. Unify security assessment for applications among various
vulnerability databases [32]. Unlike the NVD database,
certain vulnerability databases, such as China National
Vulnerability Database of Information Security (CNNVD),
relies on their own labeling system to register vulnerable
applications. In other words, the applications that exist
only in the CNNVD would be registered under a disparate
system than NVD. Our prediction models provide a
possible mapping of #CVEs for such applications from
CNNVD to NVD, which further provides a security com-
parison between those applications to the ones in NVD.

IV. Evaluate the vulnerable open source software projects
outside the CVE and NVD. Multiple reasons cause the
existence of known vulnerabilities to not have CVE labels
in certain types of open source software projects [33]. For
example, Snyk’s database8 shows that only 11% of npm
package vulnerabilities correspond to a CVE ID. The
majority of the vulnerabilities are either not associated
with CVE or not listed on NVD. To this extent, our
prediction models bridge this gap and provide a possible
solution to evaluate these types of projects.

C. Limitations

Guidelines. The accuracy of our prediction models enables
us to draw some conclusions about the possible importance of
selected features due to the different feature sets that we tested.
However, because of the black-box nature of most of the
machine learning models we use, those models do not directly
provide interpretable patterns. Also, one of our findings related
to the statistical models (Table IV) indicates that there might
not exist any straightforward correlation between the features
and vulnerabilities. Thus, our future work will study the
interpretable learning models that could provide guidelines.
Software evolution. The software metrics we consider in this
work are collected from the latest version available at the
time of collection. It is of interest to note that several such
metrics are selected in the BT set, which is used to achieve
one of the best predictions. This would indicate that current
software metrics help predict the number of past discovered
vulnerabilities. However, the importance of such metrics in
the prediction among other features is unclear. Also, it could
be argued that the source code of an application changes
over time, and in particular those features may change before
and after the vulnerability is fixed. There are several reasons
why we do not try to capture features directly from versions
affected by CVEs or even older versions:

I. For instance, fixing a buffer overflow vulnerability in C
may only require adjusting a buffer size or changing a
strcpy to strncpy, which overall makes little differ-
ence in the source code. Therefore, we would expect only
a marginal impact on the features, e.g., a handful of lines
of code added or removed, few more commits, and a small
reduction in the number of flaws identified by FlawFinder.

II. Considering an application is affected by a number of
CVEs over the years, which version should we pick to
capture our features? It might be possible to combine
observations throughout the versions of an application.
However, we are not going in this direction in this work
since: a) capturing past time-dependent features is non-
trivial (e.g., past popularity is not available on GitHub); b)
it introduces another dimension to the problem (i.e., ver-
sions) that would vary significantly from one application
to another and introduce sparsity in the data, which may
cause machine learning algorithms to overfit the data; c) a
possible “averaged” observation could be obtained for each

8https://snyk.io/vuln

13



1556-6013 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2019.2895963, IEEE
Transactions on Information Forensics and Security

TABLE VII: Correlation between DT and BT set
PPPPPDT

BT #forks #contributors #commits age %C size #files #program-files #comment #code L2 L4

#watches 0.95 0.67 0.31 0.12 -0.08 0.08 0.24 0.26 0.17 0.23 0.05 0.03
#contributors 0.73 - 0.44 0.13 -0.08 0.13 0.25 0.28 0.19 0.25 0.05 0.04

#commits 0.33 0.44 - 0.21 -0.05 0.69 0.64 0.57 0.56 0.63 0.19 0.11
age 0.15 0.13 0.21 - -0.03 0.06 0.13 0.11 0.06 0.10 0.07 0.04

application; however, more work would be needed to eval-
uate how to properly “flatten” several observed versions
into a meaningful feature vector across applications.

By taking the last version, we argue that it somehow
captures some history of this application, and in particular
it is the result of decisions made to fix the discovered vul-
nerabilities. Not only does the number of commits capture
this evolution, but also the number of contributors would be
expected to increase, software metrics and property metrics
may also evolve, e.g., code refactoring may impact the number
of functions, and the number of comments.
CVEs vs. vulnerabilities. We need to distinguish actual
and discovered vulnerabilities. Our model takes into account
#CVEs as they are reported at some point in time. Although
this number is the best indication of (past) vulnerabilities in an
application, it is nonetheless incomplete as new vulnerabilities
may be found later and impact a number of previous versions
including the one that we considered. Thus, a given repository
may contain an unknown number of previously unidentified
vulnerabilities for which some of our metrics could lead our
models to overestimate the #CVEs (but not the number of
potential vulnerabilities).

Furthermore, #CVEs that affect an application also depends
on human factors, i.e., whether the project will receive enough
attention from security-minded individuals or organizations to
read, review or audit the source code. Our model tries to
capture both overall trends of the application’s characteristics
and human factors.
Zero CVEs. By design, we have not included any repository
that is unaffected by any CVE. This allows us to assume
a closed world of applications that are affected by at least
one known vulnerability. Indeed, the number of open-source
applications with a non-zero #CVEs is bounded, and such
repositories are identifiable. The same does not hold for 0-
#CVEs repositories.

Other applications that do not share this property would
change our assumption to an open world, and more challenges
may arise. For example, which proportion of 0-#CVEs applica-
tions should we include? There are many GitHub repositories
that only host some small scripts/tools that may never be
looked at for vulnerabilities despite their popularity. Others
may contain non-software data such as (as we found): text-
based documents, configuration files, math or proof files,
graphics files, game scripting languages, as well as many
applications written in exotic languages not used by the
general public or not running on common hardware (e.g.,
Fortran, VHDL, Elixir, Kotlin, SaltStack, NewLisp, QML,
AMPL, to name of few of what we have seen). It is not
clear whether we should filter out these “noisy” repositories
or keep them. Also, we would need to leverage a different list

of repositories that include such CVE-free applications. The
choice of a list would be critical to avoid biases. To remain
in a closed-world assumption, all GitHub repositories would
need to be considered, which is arguably difficult to handle.

VI. RELATED WORK

Two major types of vulnerability models have been stud-
ied in the literature as a subfield of software security. One
focuses on studying the features that correlate with vulnerable
components in an application. It is known as the vulnerability
prediction model (VPM). The other one focuses on using
mathematical models to fit the vulnerability discovery model
(VDM) to the historical data, and then to predict the future
number of vulnerabilities for one application.

One of the first works in VPM is by Shin and Williams [3],
[34]. Those works evaluate the ability of complexity met-
rics to discriminate between vulnerable and non-vulnerable
functions. Zimmermann et al. [35] analyze the possibility
of predicting vulnerable components in Windows Vista by
using Logistic Regression for five groups of metrics: churn,
complexity, coverage, dependency, and organizational. Binary
results are evaluated with tenfold cross-validation that yields
a precision below 67% and recall below 21%. Meneely and
William [36] study the developer-activity metrics and software
vulnerabilities. The precision and recall from the Bayesian
network predictive model in that study are between 12%–29%
and 32%–56%, respectively. Doyle and Walden [37] study the
relationships between software metrics and vulnerable com-
ponents in 14 open source web applications. In that work, the
Spearman’s rank correlation between the metrics and security
resources indicator (SRI) is calculated and obtained based on
security scanners. This type of VPMs, which is based on soft-
ware metrics to pinpoint vulnerable functions/files/components
in an application, requires low inspection effort; however, it
often suffers from a high false positive rate.

Chowdbury et al. [38] conduct a study to show that
complexity, coupling, and cohesion (CCC) related structural
metrics are important indicators of vulnerable components.
The authors identify 75% of the vulnerability-prone files from
52 Mozilla Firefox releases with a 30% false positive rate.
Moshtar et al. [39] propose a set of coupling metrics, which
considers the iteration of application modules, thus improving
the recall from 60.9% to 87.4% for cross-project vulnerability
prediction. Shin and Williams [40] perform a binary classifica-
tion using Logistic Regression with tenfold cross-validation to
analyze the relationship between complexity, code-churn and
developer-activity (CCD) metrics and vulnerable components.
The authors use 18 complexity metrics, 5 code churn metrics
and a fault history metric presented in [2]. The recall and
precision from that study are 83% and 11%, respectively.

14



1556-6013 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2019.2895963, IEEE
Transactions on Information Forensics and Security

Other specific applications from VPM are often based on
code-specific features. Perl et al. [6] propose VCCFinder to
analyze the effects of metadata in the code repositories with
code metrics to predict vulnerable commits. The authors study
55 C/C++ GitHub projects including 640 vulnerabilities. By
contrast, in our study we leverage 14 times more applications
and 10 times more vulnerabilities. The precision of VCCFinder
is 60% while the recall is 24%. Younis et al. [41] study the
relationship between software metrics and vulnerable functions
in existing exploits. In that work, 183 vulnerabilities from
NVD for the linux kernel and Apache HTTP server are
examined. Stuckman et al. [42] add a code token list to identify
vulnerable components. They conclude that the token-based
metrics reveal more information than the software metrics in
predicting vulnerable components. Walden et al. [43] compare
the predictive powers between software metrics and text min-
ing in predicting vulnerable components. Davari et al. [44]
propose an automatic vulnerability classification framework
based on the features that are extracted from textual reports
and the code that fixes vulnerabilities. Li et al. [45] design
a deep learning-based vulnerability detection system, Vulner-
ability Deep Pecker (VulDeePecker), to automatically extract
features from vulnerable code fragments from one product and
to predict vulnerabilities in other products.

Mathematical VDMs focus on modeling the discovery pro-
cess of software vulnerabilities by evaluating the number of
vulnerabilities with time. The common existing models in the
literature are Linear [7], Exponential [8], Alhazmi Malaiya
Logistic (AML) [46], and the effort-based model. Woo et
al. [47] study both time and effort-based vulnerability dis-
covery models based on Apache and IIS. Massacci et al. [48]
conduct an empirical study related to VDMs, and conclude that
the simplest linear model is an appropriate choice in terms
of quality and predictability for the first 6-12 months after
releasing the data. Further than predicting the accumulated
number of vulnerabilities, Johnson et al. [49] propose a model
called the time between vulnerability disclosure (TBVD) to
evaluate the likelihood of finding a zero-day vulnerability
within a given time-frame. However, all of these models are
specific to one application and normally a large data history
is needed to obtain a better-fitted model.

VII. CONCLUSION AND FUTURE WORK

In this paper, we investigated the possible relationships
between software features and the number of vulnerabilities.
To the best of our knowledge, this is currently the most
comprehensive study to date, as it contains 780 applications,
including 6,498 vulnerabilities. We find that machine learning
models could help to predict the number of CVEs in an appli-
cation. In our single-model study, the trends of the predictions
of two models are similar to that of the real numbers. These
results could be used as a relative security comparison among
applications. However, these predicted results are not accurate
enough to serve as an absolute security evaluation for an
application. In our study, the best overall accuracy we achieve
is 77% ±5 CVEs. In the end, the accuracy could be improved
by using cascaded models. We interpret that the small and

large applications should be treated with different prediction
models to improve the accuracy.

The possible future directions for this work are as follows:
• First, the features we gathered are limited to GitHub projects

only. Our future work will expand this study to other open
source software projects websites, e.g., SourceForge.

• Second, semantic code related features, such as Code Gad-
get (a number of program statements, which are semanti-
cally related to each other [45]), have not been taken into
consideration in this work. A future direction is to add
more code-related features to complete the feature sets and
to repeat the experiments to observe the evolution of the
predictive power.

• Third, the machine learning methods we applied are mostly
blackbox structures, and we plan to apply other methods
whose results might be interpretable.

ACKNOWLEDGMENTS

We are grateful to the first author’s thesis committee mem-
bers and the anonymous TIFS reviewers for their comments
and suggestions. The first and third authors are partially
supported by the Natural Sciences and Engineering Research
Council of Canada under a Discovery Grant. The second
author is supported in part by a Vanier Canada Graduate
Scholarship (CGS).

REFERENCES

[1] F. Akiyama, “An example of software system debugging,” in IFIP
Congress (1), vol. 71, pp. 353–359, 1971.

[2] Y. Shin and L. Williams, “Can traditional fault prediction models be used
for vulnerability prediction?,” Empirical Software Engineering, vol. 18,
no. 1, pp. 25–59, 2013.

[3] Y. Shin and L. Williams, “Is complexity really the enemy of software
security?,” in ACM Workshop on Quality of Protection (QoP’08), 2008.

[4] A. E. Hassan, “Predicting faults using the complexity of code changes,”
in International Conference on Software Engineering (ICSE’09), 2009.

[5] S. Kirbas, B. Caglayan, T. Hall, S. Counsell, D. Bowes, A. Sen, and
A. Bener, “The relationship between evolutionary coupling and defects
in large industrial software,” Journal of Software: Evolution and Process,
vol. 29, no. 4, 2017.

[6] H. Perl, S. Dechand, M. Smith, D. Arp, F. Yamaguchi, K. Rieck, S. Fahl,
and Y. Acar, “VCCFinder: Finding potential vulnerabilities in open-
source projects to assist code audits,” in Computer and Communications
Security (CCS’15), 2015.

[7] J. D. Musa and K. Okumoto, “A logarithmic poisson execution time
model for software reliability measurement,” in International Conference
on Software Engineering (ICSE’84), 1984.

[8] E. Rescorla, “Is finding security holes a good idea?,” IEEE Security &
Privacy, vol. 3, no. 1, pp. 14–19, 2005.

[9] “National Vulnerability Database.” https://nvd.nist.gov/, 2017.
[10] S. Rahimi and M. Zargham, “Vulnerability scrying method for software

vulnerability discovery prediction without a vulnerability database,”
IEEE Transactions on Reliability, vol. 62, no. 2, pp. 395–407, 2013.

[11] H. Abdi and L. J. Williams, “Principal component analysis,” Wiley
interdisciplinary reviews: computational statistics, vol. 2, no. 4, pp. 433–
459, 2010.

[12] L. v. d. Maaten and G. Hinton, “Visualizing data using t-SNE,” Journal
of Machine Learning Research, vol. 9, no. Nov, pp. 2579–2605, 2008.

[13] G. Jay, J. E. Hale, R. K. Smith, D. P. Hale, N. A. Kraft, and C. Ward,
“Cyclomatic complexity and lines of code: Empirical evidence of a sta-
ble linear relationship,” Journal of Software Engineering & Applications,
vol. 2, no. 3, pp. 137–143, 2009.

[14] A. Danial, “Count lines of code (cloc).” https://github.com/AlDanial/
cloc, 2017.

[15] D. Wheeler, “Flawfinder,” https://dwheeler.com/flawfinder/ , 2017.
[16] P. Manadhata and J. Wing, “An attack surface metric,” IEEE Transac-

tions on Software Engineering, vol. 37, pp. 371–386, May 2011.

15

https://github.com/AlDanial/cloc
https://github.com/AlDanial/cloc
https://dwheeler.com/flawfinder/


1556-6013 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2019.2895963, IEEE
Transactions on Information Forensics and Security

[17] J. Pohjalainen, O. Räsänen, and S. Kadioglu, “Feature selection methods
and their combinations in high-dimensional classification of speaker
likability, intelligibility and personality traits,” Computer Speech &
Language, vol. 29, no. 1, pp. 145–171, 2015.

[18] J. Reunanen, “Overfitting in making comparisons between variable
selection methods,” Journal of Machine Learning Research, vol. 3,
no. Mar, pp. 1371–1382, 2003.

[19] M. A. Hall, Correlation-based feature selection for machine learning.
PhD thesis, University of Waikato, Hamilton, New Zealand, Apr. 1999.

[20] R. Battiti, “Using mutual information for selecting features in supervised
neural net learning,” IEEE Transactions on Neural Networks, vol. 5,
no. 4, pp. 537–550, 1994.

[21] K. Kira and L. A. Rendell, “The feature selection problem: Traditional
methods and a new algorithm,” in National Conference on Artificial
Intelligence, vol. 2, pp. 129–134, 1992.

[22] J. Mingers, “An empirical comparison of selection measures for
decision-tree induction,” Machine Learning, vol. 3, no. 4, pp. 319–342,
1989.

[23] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5–
32, 2001.

[24] C. W. Dunnett, “A multiple comparison procedure for comparing several
treatments with a control,” Journal of the American Statistical Associa-
tion, vol. 50, no. 272, pp. 1096–1121, 1955.

[25] C. Vercellis, Business intelligence: data mining and optimization for
decision making. John Wiley & Sons, 2011.

[26] S. Arlot and A. Celisse, “A survey of cross-validation procedures for
model selection,” Statistics Surveys, vol. 4, pp. 40–79, 2010.

[27] MathWorks.com, “Divide data for optimal neural network train-
ing.” https://www.mathworks.com/help/nnet/ug/divide-data-for-optimal-
neural-network-training.html.

[28] J. W. Sammon, “A nonlinear mapping for data structure analysis,” IEEE
Transactions on Computers, vol. 100, no. 5, pp. 401–409, 1969.

[29] G. E. Hinton and S. T. Roweis, “Stochastic neighbor embedding,” in
Advances in Neural Information Processing Systems, pp. 857–864, 2003.

[30] L. van der Maaten and G. Hinton, “User’s guide for t-SNE software,”
2008. https://lvdmaaten.github.io/tsne/User_guide.pdf.

[31] G. Schryen and R. Kadura, “Open source vs. closed source software:
towards measuring security,” in Symposium on Applied Computing
(SAC’09), 2009.

[32] Forum of Incident Response and Security Teams, “Vulnerability database
catalog.” https://www.first.org/global/sigs/vrdx/vdb-catalog.

[33] G. Podjarny, Securing Open Source Libraries. O’Reilly, 2017.
[34] Y. Shin and L. Williams, “An empirical model to predict security

vulnerabilities using code complexity metrics,” in Empirical Software
Engineering and Measurement (ESEM’08), 2008.

[35] T. Zimmermann, N. Nagappan, and L. Williams, “Searching for a
needle in a haystack: Predicting security vulnerabilities for windows
vista,” in International Conference on Software Testing, Verification and
Validation (ICST’10), 2010.

[36] A. Meneely and L. Williams, “Strengthening the empirical analysis of
the relationship between Linus’ law and software security,” in Interna-
tional Symposium on Empirical Software Engineering and Measurement
(ESEM’10), 2010.

[37] M. Doyle and J. Walden, “An empirical study of the evolution of
PHP web application security,” in International Workshop on Security
Measurements and Metrics (Metrisec), 2011.

[38] I. Chowdhury and M. Zulkernine, “Using complexity, coupling, and co-
hesion metrics as early indicators of vulnerabilities,” Journal of Systems
Architecture - Embedded Systems Design, vol. 57, no. 3, pp. 294–313,
2011.

[39] S. Moshtari and A. Sami, “Evaluating and comparing complexity,
coupling and a new proposed set of coupling metrics in cross-project vul-
nerability prediction,” in Symposium on Applied Computing (SAC’16),
2016.

[40] Y. Shin, A. Meneely, L. Williams, and J. A. Osborne, “Evaluating
complexity, code churn, and developer activity metrics as indicators of
software vulnerabilities,” IEEE Transactions on Software Engineering,
vol. 37, no. 6, pp. 772–787, 2011.

[41] A. Younis, Y. Malaiya, C. Anderson, and I. Ray, “To fear or not to fear
that is the question: Code characteristics of a vulnerable function with
an existing exploit,” in Conference on Data and Application Security
and Privacy (CODASPY’16), 2016.

[43] J. Walden, J. Stuckman, and R. Scandariato, “Predicting vulnerable com-
ponents: Software metrics vs text mining,” in International Symposium
on Software Reliability Engineering (ISSRE’14), 2014.

[42] J. Stuckman, J. Walden, and R. Scandariato, “The effect of dimen-
sionality reduction on software vulnerability prediction models,” IEEE
Transactions on Reliability, vol. 66, no. 1, pp. 17–37, 2017.

[44] M. Davari, M. Zulkernine, and F. Jaafar, “An automatic software
vulnerability classification framework,” in International Conference on
Software Security and Assurance (ICSSA’17), pp. 44–49, IEEE, 2017.

[45] Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng, and Y. Zhong,
“VulDeePecker: A deep learning-based system for vulnerability detec-
tion,” in Network and Distributed System Security (NDSS’18), 2018.

[46] O. H. Alhazmi and Y. K. Malaiya, “Prediction capabilities of vulner-
ability discovery models,” in Annual Reliability and Maintainability
Symposium (RAMS’06), 2006.

[47] S. Woo, H. Joh, O. H. Alhazmi, and Y. K. Malaiya, “Modeling vulner-
ability discovery process in Apache and IIS HTTP servers,” Computers
& Security, vol. 30, no. 1, pp. 50–62, 2011.

[48] F. Massacci and V. H. Nguyen, “An empirical methodology to evaluate
vulnerability discovery models,” IEEE Transactions on Software Engi-
neering, vol. 40, no. 12, pp. 1147–1162, 2014.

[49] P. Johnson, D. Gorton, R. Lagerström, and M. Ekstedt, “Time between
vulnerability disclosures: A measure of software product vulnerability,”
Computers & Security, vol. 62, pp. 278–295, 2016.

Mengyuan Zhang is an Experienced Researcher at Ericsson
Research, Montreal, QC, Canada. She received her Ph.D. in
Information and Systems Engineering from Concordia Uni-
versity in Montreal. Her research interests include security
metrics, attack surface and cloud computing security. She has
published several research papers and book chapters on the
aforementioned topics.

Xavier de Carné de Carnavalet is a Ph.D. candidate in
Information and Systems Engineering at Concordia University,
Montreal, QC, Canada. He received in 2014 a Dipl.-Ing. from
École Supérieure d’Informatique, Électronique et Automa-
tique, Paris, France, and an M.A.Sc. in Information Systems
Security from Concordia University. His research interests
are: privacy, passwords and authentication, TLS interception,
trusted computing, reverse-engineering, and machine learning
applications to information systems security.

Lingyu Wang is a professor in the Concordia Institute
for Information Systems Engineering (CIISE) at Concordia
University, Montreal, Quebec, Canada. He received his Ph.D.
degree in Information Technology in 2006 from George Ma-
son University. He holds a M.E. from Shanghai Jiao Tong
University and a B.E. from Shenyang Aerospace University in
China. His research interests include cloud computing security,
network security metrics, software security, and privacy. He
has co-authored five books, two patents, and over 100 refereed
conference and journal articles at top journals/conferences,
such as TOPS, TIFS, TDSC, TMC, JCS, S&P, CCS, NDSS,
ESORICS, PETS, ICDT, etc. He is serving as an associate
editor for IEEE Transactions on Dependable and Secure Com-
puting (TDSC) and he has served as the program (co)-chair
of seven international conferences and the technical program
committee member of over 100 international conferences.

Ahmed Ragab received the Ph.D. in Industrial Engineer-
ing from Polytechnique Montréal, Canada, in 2014. He has
received the M.Sc. in Control Engineering in 2007 and the
B.Sc. in Electronic Engineering in 2003, from the Faculty of
Electronic Engineering, Menouf, Egypt. His research interests
are: Control Engineering, Machine Learning, Operations Re-
search, Discrete Event Systems, Maintenance and Reliability
Engineering, Fault Diagnosis and Prognosis and Decision
Support Systems.

16

https://www.mathworks.com/help/nnet/ug/divide-data-for-optimal-neural-network-training.html
https://www.mathworks.com/help/nnet/ug/divide-data-for-optimal-neural-network-training.html
https://lvdmaaten.github.io/tsne/User_guide.pdf
https://www.first.org/global/sigs/vrdx/vdb-catalog



